4.7 Article

A fault diagnosis method for small pressurized water reactors based on long short-term memory networks

期刊

ENERGY
卷 239, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2021.122298

关键词

Fault diagnosis; Small pressurized water reactor; Long short-term memory networks; Sensor and actuator; Labeled fault dictionary

向作者/读者索取更多资源

This study proposes a sensor and actuator fault diagnosis method for small pressurized water reactors, using LSTM networks to achieve end-to-end fault diagnosis with an accuracy of 92.06% and strong noise immunity capability.
This paper proposes a sensor and actuator fault diagnosis method for small pressurized water reactors (SPWRs), with an innovative labeled fault dictionary established to map complex fault modes, using long short-term memory (LSTM) networks. It can directly learn features from multivariable time-series data and capture long-term dependencies through the cyclic behavior and gate mechanism of LSTM to realize the end-to-end fault diagnosis of SPWRs. Experimental results on a SPWR fault dataset show that the method can effectively diagnose the location, type, and extent of sensor and actuator faults from raw time-series signals with an average accuracy of 92.06% and outperforms three other widely-used fault diagnosis methods. Furthermore, the diagnosis results on the SPWR fault dataset injected with different noise signals demonstrate the strong noise immunity capability of the established LSTM network. Therefore, the proposed method is expected to achieve satisfactory fault diagnosis performances in actual operating environments of SPWRs. (c) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据