4.5 Article

Base Oil Process Modelling Using Machine Learning

期刊

ENERGIES
卷 14, 期 20, 页码 -

出版社

MDPI
DOI: 10.3390/en14206527

关键词

machine learning; base oil; SVR; random forest; decision tree; XGBoost

资金

  1. Universiti Teknologi PETRONAS [015MD0-051]

向作者/读者索取更多资源

The quality of feedstock for base oil production varies due to receiving different blends of crude oil, leading to reactive operations based on limited lab characterizations. Utilizing machine learning algorithms proactively can minimize production loss and optimize product recovery during transition, with the XGBoost model showing optimal performance in predicting base oil product properties.
The quality of feedstock used in base oil processing depends on the source of the crude oil. Moreover, the refinery is fed with various blends of crude oil to meet the demand of the refining products. These circumstances have caused changes of quality of the feedstock for the base oil production. Often the feedstock properties deviate from the original properties measured during the process design phase. To recalculate and remodel using first principal approaches requires significant costs due to the detailed material characterizations and several pilot-plant runs requirements. To perform all material characterization and pilot plant runs every time the refinery receives a different blend of crude oil will simply multiply the costs. Due to economic reasons, only selected lab characterizations are performed, and the base oil processing plant is operated reactively based on the feedback of the lab analysis of the base oil product. However, this reactive method leads to loss in production for several hours because of the residence time as well as time required to perform the lab analysis. Hence in this paper, an alternative method is studied to minimize the production loss by reacting proactively utilizing machine learning algorithms. Support Vector Regression (SVR), Decision Tree Regression (DTR), Random Forest Regression (RFR) and Extreme Gradient Boosting (XGBoost) models are developed and studied using historical data of the plant to predict the base oil product kinematic viscosity and viscosity index based on the feedstock qualities and the process operating conditions. The XGBoost model shows the most optimal and consistent performance during validation and a 6.5 months plant testing period. Subsequent deployment at our plant facility and product recovery analysis have shown that the prediction model has facilitated in reducing the production recovery period during product transition by 40%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据