4.5 Article

Experimental Study of Horizontal Flow Boiling Heat Transfer Coefficient and Pressure Drop of R134a from Subcooled Liquid Region to Superheated Vapor Region

期刊

ENERGIES
卷 15, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/en15030681

关键词

heat transfer coefficient; flow boiling; R134a; convective boiling; nucleate boiling; vapor quality; mass flux; heat flux

向作者/读者索取更多资源

In recent years, research on flow boiling heat transfer has gained popularity for understanding its mechanisms and characteristics. This study experimentally investigated the characteristics of flow boiling heat transfer from a single-phase region to a two-phase region. The results showed that nucleate boiling dominated in the low vapor quality region, while convective boiling dominated in the high vapor quality region. The flow patterns observed were slug and intermittent in the low vapor quality region, and annular and mist in the high vapor quality region. Frictional pressure drop increased with increasing mass flux and vapor quality in the two-phase region.
For the past few years, research in the field of flow boiling heat transfer has gained immense popularity for unravelling the dominant mechanism responsible for controlling heat transfer and identifying a parametric trend for understanding the characteristics of flow boiling heat transfer. This has led to several assumptions and models for predicting heat transfer during flow boiling without any known generalized mechanism. This study therefore seeks to experimentally study the characteristics of heat transfer during flow boiling over a wide range but small increase in vapor quality from a single-phase subcooled region through to a two-phase superheated vapor region. The study was performed with an R134a refrigerant in a single horizontal circular stainless-steel smooth tube that had an internal diameter of 5 mm. In this experimental study, local heat transfer coefficients and frictional pressure drop were measured for low heat fluxes of 4.6-8.5 kW/m(2), mass fluxes of 200-300 kg/(m(2)s), vapor quality from -0.1 to 1.2 and a low constant saturation pressure of 460 kPa. Flow patterns observed during the study were recorded with a high-speed camera at 2000 fps. In covering a wide range of vapor quality, a peak of heat transfer coefficient near a vapor quality of zero and a local minimum observed in the low vapor quality region were observed, and both were sensitive to heat flux and mildly sensitive to mass flux. Generally, at low vapor quality, the heat transfer coefficient deteriorated with vapor quality and this was sensitive to heat flux but insensitive to mass flux and vapor quality, indicating nucleate boiling dominance in low vapor quality regions. In high vapor quality regions, the heat transfer coefficient was sensitive to mass flux and insensitive to heat flux. This indicates the dominance of convective boiling. In the low vapor quality regions, the flow patterns observed were slug and intermittent, while in the high vapor quality region, annular and mist flow patterns were observed. Generally, frictional pressure drop increased with increasing mass flux and vapor quality in the two-phase region.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据