4.5 Article

Vector-Field Visualization of the Total Reflection of the EM Wave by an SRR Structure at the Magnetic Resonance

期刊

ENERGIES
卷 15, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/en15010111

关键词

SRR structure; frequency selective surfaces; subreflector; split-ring resonator; metamaterials; electromagnetic field; metamaterial unit cell; computer visualization; electromagnetic coupling; CST Studio

资金

  1. Ministry of Science and Higher Education [006/RID/2018/19]

向作者/读者索取更多资源

This study aimed to better understand the interaction of electromagnetic waves with metamaterials through virtual visualization. The researchers used CST Studio software to simulate and comprehensively model high-frequency electromagnetic fields and conducted virtual visualizations of the interaction of an electromagnetic plane wave with a split-ring resonator (SRR) metamaterial structure. The results confirmed the total reflection phenomenon of the electromagnetic plane wave on the SRR structure and also showed the transmission of the wave at a detuned frequency. These visualizations provide unique educational presentations for understanding the interaction of electromagnetic waves with SRR structures at different frequencies.
Metamaterials are artificially structured composite media with a unique electromagnetic (EM) response that is absent from naturally occurring materials, which appears counterintuitive and aggravates traditional difficulties in perceiving the behavior of EM waves. The aim of this study was to better understand the interaction of EM waves with metamaterials by virtual visualizing the accompanying physical phenomena. Over the years, virtual visualization of EM wave interactions with metamaterials has proven to be a powerful tool for explaining many phenomena that occur in metamaterials. In this study, we performed virtual visualization of the interaction of an EM plane wave with a split-ring resonator (SRR) metamaterial structure, employing CST Studio software for modeling and comprehensive simulations of high-frequency EM fields of 3D objects. The SRR structure was designed to have its magnetic resonance at the frequency f = 23.69 GHz, which is of interest for antennas supporting wireless microwave point-to-point communication systems (e.g., in satellite systems). Our numerical calculations of the coefficients of absorption, reflection, and transmission of the EM plane wave incident on the SRR structure showed that the SRR structure totally reflected the plane EM wave at the magnetic resonance frequency. Therefore, we focused our research on checking whether the results of numerical calculations could be confirmed by visualizing the total reflection phenomenon on the SRR structure. The performed vector-field visualization resulted in 2D vector maps of the electric and magnetic fields around the SRR structure during the wave period, which demonstrated the existence of characteristic features of the total reflection phenomenon when the EM plane interacted with the studied SRR, i.e., no EM field behind the SRR structure and the standing electric and magnetic waves before the SRR structure, thus, confirming the numerical calculations visually. For deeper understanding the interaction of the EM plane wave with the SRR structure of reflection characteristics at the magnetic resonance frequency f = 23.69 GH, we also visualized the SRR structure response at the frequency f = 21 GHz, i.e., at the so-called detuned frequency. As expected, at the detuned frequency, the SRR structure lost its metamaterial properties and the obtained 2D vector maps of the electric and magnetic fields around the SRR structure during the wave period showed the transmitted EM wave behind the SRR structure and no EM (fully) standing waves before the SRR structure. The visualizations presented in this study are both unique educational presentations to help understand the interaction of EM plane waves with the SRR structure of reflection characteristics at the magnetic resonance and detuned frequencies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据