4.5 Article

Effects of Inhibitory Compounds Present in Lignocellulosic Biomass Hydrolysates on the Growth of Bacillus subtilis

期刊

ENERGIES
卷 14, 期 24, 页码 -

出版社

MDPI
DOI: 10.3390/en14248419

关键词

lignocellulosic biomass; inhibitors; hydrolysate; cell growth; Bacillus subtilis

向作者/读者索取更多资源

This study evaluated the individual and combined effects of inhibitory compounds present in lignocellulosic biomass on the growth of Bacillus subtilis. It was found that benzoic acid and furfural were the most potent inhibitors in the mixture, affecting the growth of B. subtilis.
This study evaluated the individual and combined effects of inhibitory compounds formed during pretreatment of lignocellulosic biomass on the growth of Bacillus subtilis. Ten inhibitory compounds commonly present in lignocellulosic hydrolysates were evaluated, which included sugar degradation products (furfural and 5-hydroxymethylfurfural), acetic acid, and seven phenolic compounds derived from lignin (benzoic acid, vanillin, vanillic acid, ferulic acid, p-coumaric acid, 4-hydroxybenzoic acid, and syringaldehyde). For the individual inhibitors, syringaldehyde showed the most toxic effect, completely inhibiting the strain growth at 0.1 g/L. In the sequence, assays using mixtures of the inhibitory compounds at a concentration of 12.5% of their IC50 value were performed to evaluate the combined effect of the inhibitors on the strain growth. These experiments were planned according to a Plackett-Burman experimental design. Statistical analysis of the results revealed that in a mixture, benzoic acid and furfural were the most potent inhibitors affecting the growth of B. subtilis. These results contribute to a better understanding of the individual and combined effects of inhibitory compounds present in biomass hydrolysates on the microbial performance of B. subtilis. Such knowledge is important to advance the development of sustainable biomanufacturing processes using this strain cultivated in complex media produced from lignocellulosic biomass, supporting the development of efficient bio-based processes using B. subtilis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据