4.7 Article

Triadimefon increases fetal Leydig cell proliferation but inhibits its differentiation of male fetuses after gestational exposure

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2021.112942

关键词

Triadimefon; Fungicide; Fetal Leydig cell development; Steroidogenesis; Proliferation

资金

  1. NSFC [81730042]

向作者/读者索取更多资源

Triadimefon inhibits the development of fetal Leydig cells in male fetuses by suppressing their differentiation, as well as inducing abnormal aggregation of these cells.
Triadimefon is a broad-spectrum fungicide widely applied in the agriculture. It is believed to be an endocrine disruptor. Whether triadimefon can inhibit the development of fetal Leydig cells and the underlying mechanisms are unknown. Thirty-two female pregnant Sprague-Dawley rats were randomly assigned into four groups and were dosed via gavage of triadimefon (0, 25, 50, and 100 mg/kg/day) for 9 days from gestational day (GD) 12-20. Triadimefon significantly reduced serum testosterone level in male fetuses at 100 mg/kg. The double immunofluorescence staining of proliferating cell nuclear antigen (PCNA) and cytochrome P450 cholesterol sidechain cleavage (a biomarker for fetal Leydig cells) was used to measure PCNA-labeling in fetal Leydig cells. It markedly increased fetal Leydig cell number primarily via increasing single cell population and elevated the PCNA-labeling of fetal Leydig cells in male fetuses at 100 mg/kg while it induced abnormal aggregation of fetal Leydig cells. The expression levels of fetal Leydig cell genes, Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Insl3 and Nr5a1, were determined to explore its effects on fetal Leydig cell development. We found that triadimefon markedly down-regulated the expression of Leydig cell genes, Hsd17b3, Insl3, and Nr5a1 as low as 25 mg/kg and Scarb1 and Cyp11a1 at 100 mg/kg. It did not affect Sertoli cell number but markedly downregulated the expression of Sertoli cell gene Amh at 50 and 100 mg/kg. Triadimefon significantly downregulated the expression of antioxidant genes Sod1, Gpx1, and Cat at 25-100 mg/kg, suggesting that it can induce oxidative stress in fetal testis, and it reduced the phosphorylation of ERK1/2 and AKT2 at 100 mg/kg, indicating that it can inhibit the development of fetal Leydig cells. In conclusion, gestational exposure to triadimefon inhibits the development of fetal Leydig cells in male fetuses by inhibiting its differentiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据