4.7 Article

Tradeoffs of managing cod as a sustainable resource in fluctuating environments

期刊

ECOLOGICAL APPLICATIONS
卷 32, 期 2, 页码 -

出版社

WILEY
DOI: 10.1002/eap.2498

关键词

cannibalism; climate change; cohort resonance; early life history; ecosystem-based management; food web; forage fish; population regulation; recruitment dynamics; stock assessment; structural uncertainty; wavelet analysis

资金

  1. Institute of Marine Research

向作者/读者索取更多资源

The study demonstrates that applying management policies to suppress fluctuations in fishery yield in variable environments can lead to unintended outcomes in harvested predators and the sustainability of harvesting. By simulating age-structured population and harvest dynamics of Atlantic cod in the Barents Sea, the research reveals that suppressing short-term variability in catch targets can increase the risk of overharvesting.
Sustainable human exploitation of living marine resources stems from a delicate balance between yield stability and population persistence to achieve socioeconomic and conservation goals. But our imperfect knowledge of how oceanic oscillations regulate temporal variation in an exploited species can obscure the risk of missing management targets. We illustrate how applying a management policy to suppress fluctuations in fishery yield in variable environments (prey density and regional climate) can present unintended outcomes in harvested predators and the sustainability of harvesting. Using Atlantic cod (Gadus morhua, an apex predatory fish) in the Barents Sea as a case study we simulate age-structured population and harvest dynamics through time-varying, density-dependent and density-independent processes with a stochastic, process-based model informed by 27-year monitoring data. In this model, capelin (Mallotus villosus, a pelagic forage fish), a primary prey of cod, fluctuations modulate the strength of density-dependent regulation primarily through cannibalistic pressure on juvenile cod survival; sea temperature fluctuations modulate thermal regulation of cod feeding, growth, maturation, and reproduction. We first explore how capelin and temperature fluctuations filtered through cod intrinsic dynamics modify catch stability and then evaluate how management to suppress short-term variability in catch targets alters overharvest risk. Analyses revealed that suppressing year-to-year catch variability impedes management responses to adjust fishing pressure, which becomes progressively out of sync with variations in cod abundance. This asynchrony becomes amplified in fluctuating environments, magnifying the amplitudes of both fishing pressure and cod abundance and then intensifying the density-dependent regulation of juvenile survival through cannibalism. Although these transient dynamics theoretically give higher average catches, emergent, quasicyclic behaviors of the population would increase long-term yield variability and elevate overharvest risk. Management strategies that overlook the interplay of extrinsic (fishing and environment) and intrinsic (life history and demography) fluctuations thus can inadvertently destabilize fish stocks, thereby jeopardizing the sustainability of harvesting. These policy implications underscore the value of ecosystem approaches to designing management measures to sustainably harvest ecologically connected resources while achieving socioeconomic security.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据