4.6 Article

Seismic vulnerability modelling of building portfolios using artificial neural networks

期刊

出版社

WILEY
DOI: 10.1002/eqe.3567

关键词

artificial neural networks; machine learning; seismic risk assessment; seismic vulnerability

向作者/读者索取更多资源

The study investigates the advantages of incorporating machine learning algorithms such as artificial neural networks in earthquake engineering, demonstrating their potential superiority in addressing seismic risk assessment for buildings.
The incorporation of machine learning (ML) algorithms in earthquake engineering can improve existing methodologies and enable new frameworks to solve complex problems. In the present study, the use of artificial neural networks (ANNs) for the derivation of seismic vulnerability models for building portfolios is explored. Large sets of ground motion records (GMRs) and structural models representing the building stock in the Balkan region were used to train ANNs for the prediction of structural response, damage and economic loss conditioned on a vector of ground shaking intensity measures. The structural responses and loss ratios (LRs) generated using the neural networks were compared with results based on traditional regression models using scalar intensity measures in terms of efficiency, sufficiency, bias and variability. The results indicate a superior performance of the ANN models over traditional approaches, potentially allowing a greater reliability and accuracy in scenario and probabilistic seismic risk assessment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据