4.6 Article

Enhanced nucleation and large-scale growth of CVD diamond via surface-modification of silicon-incorporated diamond-like carbon thin films

期刊

DIAMOND AND RELATED MATERIALS
卷 120, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.diamond.2021.108630

关键词

Micro-diamond; Thin film; Surface modification; Silicon-incorporated diamond-like carbon

向作者/读者索取更多资源

A method to tailor the surface of silicon-incorporated diamond-like carbon thin films for enhancing diamond nucleation density and growth was reported. By modifying the surfaces of Si-DLC films with fluorine and oxygen species, a significant improvement in micro-diamond nucleation density and growth was achieved, particularly on F Si-DLC films. The F Si-DLC thin film provided a superior platform for diamond nucleation compared to O Si-DLC film, with a continuous diamond coverage up to -2 mm2.
Herein we report a method to tailor the surface of silicon-incorporated diamond-like carbon (Si-DLC) thin films to enhance the diamond nucleation density and growth. In this technique, the surfaces of Si-DLC films were modified by fluorine and oxygen species utilizing a reactive-ion etching (RIE) method. The surface properties of Si-DLC, oxygen-terminated Si-DLC (O Si-DLC), and fluorine-terminated Si-DLC (F Si-DLC) films were investigated and compared. The analyses depicted that the sp2/sp3 ratio of carbon-carbon bonds has diminished from 20.28% for Si-DLC film down to 8.96% and 4.41% for O Si-DLC and F Si-DLC films, respectively. Moreover, a significant amount of new sp3 hybridized bonds formed on the surface of the modified Si-DLC thin films, particularly in F SiDLC film. The deposition of micro-diamond on the films was performed using hot filament chemical vapor deposition (HFCVD). SEM, XRD, and Raman results showed the enhancement in nucleation density and growth of micro-diamond on F Si-DLC and O Si-DLC films and the in-plane stress reduction up to 60%. Owing to the lower number of sp2 bonds and the greater number of new sp3 sites, the F Si-DLC thin film provided a superior platform for diamond nucleation than O Si-DLC film. The continuous diamond coverage on F Si-DLC film was up to -2 mm2 versus -0.4 mm2 for O Si-DLC film.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据