4.7 Article

Energy-Efficient Resource Allocation for Downlink Non-Orthogonal Multiple Access Network

期刊

IEEE TRANSACTIONS ON COMMUNICATIONS
卷 64, 期 9, 页码 3722-3732

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCOMM.2016.2594759

关键词

Difference of convex; energy efficiency; non-orthogonal multiple access; orthogonal frequency division multiple access; resource allocation; successive interference cancellation

资金

  1. Natural Sciences and Engineering Research Council of Canada [RGPIN-2014-06119, RGPAS-462031-2014]
  2. National Natural Science Foundation of China [61271182, 61471025]
  3. Open Research Fund of National Mobile Communications Research Laboratory, Southeast University [2016D07]

向作者/读者索取更多资源

Non-orthogonal multiple access (NOMA) is a promising technique for the fifth generation mobile communication due to its high spectral efficiency. By applying superposition coding and successive interference cancellation techniques at the receiver, multiple users can be multiplexed on the same subchannel in NOMA systems. Previous works focus on subchannel assignment and power allocation to achieve the maximization of sum rate; however, the energy-efficient resource allocation problem has not been well studied for NOMA systems. In this paper, we aim to optimize subchannel assignment and power allocation to maximize the energy efficiency for the downlink NOMA network. Assuming perfect knowledge of the channel state information at base station, we propose a low-complexity suboptimal algorithm, which includes energy-efficient subchannel assignment and power proportional factors determination for subchannel multiplexed users. We also propose a novel power allocation across subchannels to further maximize energy efficiency. Since both optimization problems are non-convex, difference of convex programming is used to transform and approximate the original non-convex problems to convex optimization problems. Solutions to the resulting optimization problems can be obtained by solving the convex sub-problems iteratively. Simulation results show that the NOMA system equipped with the proposed algorithms yields much better sum rate and energy efficiency performance than the conventional orthogonal frequency division multiple access scheme.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据