4.7 Article

Autogenous shrinkage and nano-mechanical properties of UHPC containing waste brick powder derived from construction and demolition waste

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 306, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2021.124869

关键词

Sustainability; C& D waste Waste brick powder; Ultra-high performance concrete; Nanoindentation

资金

  1. Natural Science Foun-dation of Zhejiang Province [LY20E020006]
  2. International Scientific and Technological Cooperation Project of Shaoxing University [2019LGGH1009]
  3. National Natural Science Foundation of China [51602198]

向作者/读者索取更多资源

The research suggests that using an appropriate amount of recycled brick powder (RBP) as a replacement for silica fume can enhance the mechanical strength and reduce autogenous shrinkage in ultra-high performance concrete. Additionally, it improves the microstructure and performance of the concrete mixture.
Using recycled brick powder (RBP) as an alternative material in cement-based materials is an effective way to make high-value utilization of construction and demolition (C&D) waste. In this study, RBP was used to replace part of silica fume (SF) to improve the volume stability and environmental benefits of ultra-high performance concrete (UHPC), and the influence of different RBP contents on the mechanical strength, autogenous shrinkage, and microstructure of UHPC mixture was explored. The results show that although using 30-45% of RBP to replace SF reduces the strengths, an appropriate amount of RBP (15%) can significantly improve the mechanical strength of UHPC. Meanwhile, as the replacement rate of RBP increases, the autogenous shrinkage of UHPC decreases significantly. In addition, the incorporation of 15% RBP improves the solid packing state, and the internal curing effect of RBP improves the performance of the interface transition zone. From the perspective of nano-scale characteristics, the appropriate amount of RBP (15%) reduces the content of unhydrated phase, pore phase and high-density C-S-H in the matrix, while makes the ultra high-density C-S-H content increase significantly. Furthermore, UHPC mixed with 15% RBP shows lower cost and CO2-e emission. Therefore, it is feasible to use 15% RBP to replace SF to produce eco-friendly UHPC mixture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据