4.7 Article

Ensemble based machine learning approach for prediction of glioma and multi-grade classification

期刊

COMPUTERS IN BIOLOGY AND MEDICINE
卷 137, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2021.104829

关键词

Biomarkers; Ensemble learning; Glioma; Machine learning; Data analysis

向作者/读者索取更多资源

The study proposed a novel two-stage ensemble of an ensemble-type machine learning-based predictive framework for glioma detection and its histograde classification. By considering different characteristics and applying machine learning approaches, the study achieved high accuracy and other statistical parameters.
Glioma is the most pernicious cancer of the nervous system, with histological grade influencing the survival of patients. Despite many studies on the multimodal treatment approach, survival time remains brief. In this study, a novel two-stage ensemble of an ensemble-type machine learning-based predictive framework for glioma detection and its histograde classification is proposed. In the proposed framework, five characteristics belonging to 135 subjects were considered: human telomerase reverse transcriptase (hTERT), chitinase-like protein (YKL40), interleukin 6 (IL-6), tissue inhibitor of metalloproteinase-1 (TIMP-1) and neutrophil/lymphocyte ratio (NLR). These characteristics were examined using distinctive ensemble-based machine learning classifiers and combination strategies to develop a computer-aided diagnostic system for the non-invasive prediction of glioma cases and their grade. In the first stage, the analysis was conducted to classify glioma cases and control subjects. Machine learning approaches were applied in the second stage to classify the recognised glioma cases into three grades, from grade II, which has a good prognosis, to grade IV, which is also known as glioblastoma. All experiments were evaluated with a five-fold cross-validation method, and the classification results were analysed using different statistical parameters. The proposed approach obtained a high value of accuracy and other statistical parameters compared with other state-of-the-art machine learning classifiers. Therefore, the proposed framework can be utilised for designing other intervention strategies for the prediction of glioma cases and their grades.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据