4.7 Article

A computational optimization study of a self-expandable transcatheter aortic valve

期刊

COMPUTERS IN BIOLOGY AND MEDICINE
卷 139, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2021.104942

关键词

Transcatheter aortic valve; Finite element analysis; Optimization; Genetic algorithm; Shape memory alloy; Ni -Ti alloys

向作者/读者索取更多资源

The study developed a cost-effective optimization framework to find the optimal TAV stent design made of Ni-Ti alloy. The research showed that the number of cells and strut width of the stent play a crucial role in determining the maximum strain and stent design.
Developing an efficient stent frame for transcatheter aortic valves (TAV) needs thorough investigation in different design and functional aspects. In recent years, most TAV studies have focused on their clinical performance, leaflet design, and durability. Although several optimization studies on peripheral stents exist, the TAV stents have different functional requirements and need to be explicitly studied. The aim of this study is to develop a cost-effective optimization framework to find the optimal TAV stent design made of Ni-Ti alloy. The proposed framework focuses on minimizing the maximum strain occurring in the stent during crimping, making use of a simplified model of the stent to reduce computational cost. The effect of the strut cross-section of the stent, i.e., width and thickness, and the number and geometry of the repeating units of the stent (both influencing the cell size) on the maximum strain is investigated. Three-dimensional simulations of the crimping process are used to verify the validity of the simplified representation of the stent, and the radial force has been calculated for further evaluation. The results suggest the key role of the number of cells (repeating units) and strut width on the maximum strain and, consequently, on the stent design. The difference in terms of the maximum strain between the simplified and the 3D model was less than 5%, confirming the validity of the adopted modeling strategy and the robustness of the framework to improve the TAV stent designs through a simple, cost-effective, and reliable procedure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据