4.7 Article

Computation of Filament Winding Paths with Concavities and Friction

期刊

COMPUTER-AIDED DESIGN
卷 141, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.cad.2021.103089

关键词

Filament winding; Geodesic; Physically-based simulation

向作者/读者索取更多资源

An efficient method for generating geometric winding paths on parametric shapes is introduced, focusing on filament winding technology for producing composite materials. Different methods for convex and non-convex objects are proposed, with considerations for friction and bridging across concavities. The approach forms the basis for a comprehensive design system for creating, visualizing, and redesigning winding paths for various shapes.
We introduce an efficient method to support generation of geometric winding paths on parametric shapes. Filament winding is a technology for producing composite materials by winding resin-infused fibers around the underlying model. While filament winding is a long-standing manufacturing method, only a few shapes, primarily cylinders, have been manufactured in practice. Extending this to a broader range of parametric surfaces is desirable. For convex objects without friction, generating a winding path over a model is equivalent to finding a locally geodesic path on the surface. We propose a physically-based method ideally suited for generating these geodesics, and show how it can be augmented to incorporate friction in the simulation process. For non-convex objects, it is important to correctly handle the bridging of filaments across local concavities. We therefore propose an efficient method for lifting a filament from and returning it to a surface, within the same simulation framework. We demonstrate how this method forms the basis for an end-to-end system that designers can use to create, visualize, and redesign winding paths for a variety of shapes. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据