4.5 Article

Enhancing gene regulatory networks inference through hub-based data integration

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compbiolchem.2021.107589

关键词

Data integration; Diffusion algorithm; Esophageal cancer; Gene regulatory network; Gene regulatory network inference; Random walk with restart

向作者/读者索取更多资源

The study introduces an enhanced diffusion-based method for integrating various types of biological data to reconstruct gene regulatory networks, resulting in an improvement of 0.02-0.08 units in AUROC criteria across different research methods.
One of the main research topics in computational biology is Gene Regulatory Network (GRN) reconstruction that refers to inferring the relationships between genes involved in regulating cell conditions in response to internal or external stimuli. To this end, most computational methods use only transcriptional gene expression data to reconstruct gene regulatory networks, but recent studies suggest that gene expression data must be integrated with other types of data to obtain more accurate models predicting real relationships between genes. In this study, a diffusion-based method is enhanced to integrate biological data of network types besides structural prior knowledge. The Random Walk with Restart algorithm (RWR) with an emphasis on hub nodes is executed separately on each network, and then jointly optimizes low-dimensional feature vectors for network nodes by diffusion component analysis. Next, these feature vectors are used to infer gene regulatory networks. Fourteen centrality measures are studied for the detection of hub nodes to be used in the RWR algorithm, and the best centrality measure having the greatest effect on the improvement of gene network inference is selected. A case study for the Saccharomyces cerevisiae and E. coli networks shows that using the proposed features in comparison with gene expression data alone results in 0.02-0.08 units improvement in Area Under Receiver Characteristic Operator (AUROC) criteria across different gene regulatory network inference methods. Furthermore, the proposed method was applied to the esophageal cancer data to infer its gene regulatory network. The proposed framework substantially improves accuracy and scalability of GRN inference. The fused features and the best centrality measure detected can be used to provide functional insights about genes or proteins in various biological applications. Moreover, it can be served as a general framework for network data and structural data integration and analysis problems in various scientific disciplines including biology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据