4.7 Article

Axial crush simulation of composites using continuum damage mechanics: FE software and material model independent considerations

期刊

COMPOSITES PART B-ENGINEERING
卷 225, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2021.109284

关键词

Finite element analysis; Continuum damage mechanics; Crushing; Constitutive models

资金

  1. Institute of Structures and Design at the German Aerospace Center (DLR)

向作者/读者索取更多资源

This study explores the challenges of finite element simulation of industrial size composite structures under crush loading, investigating the capabilities, limitations, and challenges of physically-based axial crush simulation of composite structures without the use of non-physical parameters for model calibration. It highlights the unsuitability of crack band scaling in CDM-based material models for axial crushing simulations dominated by fragmentation.
The finite element (FE) simulation of industrial size composite structures under crush loading is a challenging task. Currently, the vast majority of these simulations employ non-physical tweakingparameters that are undesirable and limit the confidence in their predictive capabilities. This paper investigates three different material models based on continuum damage mechanics (CDM) within two commercial FE software packages, ABAQUS/EXPLICIT and LS-DYNA, to identify FE-code and material model-independent capabilities, limitations and challenges of physically-based axial crush simulation of composite structures without the use of non-physical parameters for model calibration. In particular, we show that the commonly applied crack band scaling in CDM-based material models is not suitable for the simulation of axial crushing where the dominant mode of failure is fragmentation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据