4.7 Article

Synthesis of alkali-activated uncalcined Pisha sandstone cement composites

期刊

COMPOSITES PART B-ENGINEERING
卷 225, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2021.109311

关键词

Pisha sandstone; Alkali-activated cement; Workability; Compressive strength; Drying shrinkage; Sustainability

资金

  1. National Natural Science Foundation of China [52163034]
  2. Key R&D Program of Jiangxi Province, China [20202BBGL73079]
  3. Open Fund of Yellow River Institute of Hydraulic Research, China [201806]
  4. Open Foundation of State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control [HB201914]

向作者/读者索取更多资源

This study utilized natural Pisha sandstone to produce a novel alkali-activated cement, investigating its rheological properties, compressive strength, hydration properties, etc. It was found that under certain conditions, AUPC could replace ordinary Portland cement, but high activator concentration or long curing time could increase porosity and lower compressive strength.
This work reports the utilization of natural Pisha sandstone (PS) as a new precursor to manufacture a novel alkali-activated cement. The rheological properties, compressive strength, drying shrinkage, hydration properties, CO2 emission and energy consumption of the alkali-activated uncalcined Pisha sandstone cement composites (AUPC) were investigated. AUPC mortar containing 1.0 wt% of sodium hexametaphosphate and 0.2 wt% of ligneous calcium sulfonate as plasticizers showed similar rheological properties to those of ordinary Portland cement (OPC) mortar. The compressive strength of AUPC could reach 52.7 MPa after curing at 80 degrees C for 12 h. The increase of activator concentration (up to 4 mol/L) and the extending of curing time (up to 12 h) significantly increased the hydration of feldspar, montmorillonite and blended slag in AUPC. This resulted in the formation of more low Al/Si ratio aluminosilicate gels, calcium silicate hydrate (C-S-H) gels, and calcium alumina silicate hydrate (C-A-S-H) gels. When the concentration of NaOH and the curing time exceeded 4 mol/L and 12 h respectively, the porosity of AUPC increased, thereby lowering the compressive strength. The 90-day drying shrinkage of the AUPC with 4 mol/L NaOH activator increased from 1.68 to 3.04 mm/m when the water-to-binder ratio increased from 0.25 to 0.45. The total CO2 emissions and energy consumption for producing AUPC were estimated to be much lower than producing OPC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据