4.5 Article

Human Motion Representation and Motion Pattern Recognition Based on Complex Fuzzy Theory

期刊

COMPLEXITY
卷 2021, 期 -, 页码 -

出版社

WILEY-HINDAWI
DOI: 10.1155/2021/9923748

关键词

-

资金

  1. Graduate Program of Scientific Research Fund of Yunnan Provincial Education Department [2021Y070]

向作者/读者索取更多资源

The combination of virtual reality technology and human-computer interaction technology has been increasingly used in various fields such as military simulation, medical rehabilitation, and game creation. Recognition research based on behavior and action has become a popular research direction due to its convenience, intuition, and strong interaction characteristics.
With the development of science and technology, the introduction of virtual reality technology has pushed the development of human-computer interaction technology to a new height. The combination of virtual reality and human-computer interaction technology has been applied more and more in military simulation, medical rehabilitation, game creation, and other fields. Action is the basis of human behavior. Among them, human behavior and action analysis is an important research direction. In human behavior and action, recognition research based on behavior and action has the characteristics of convenience, intuition, strong interaction, rich expression information, and so on. It has become the first choice of many researchers for human behavior analysis. However, human motion and motion pictures are complex objects with many ambiguous factors, which are difficult to express and process. Traditional motion recognition is usually based on two-dimensional color images, while two-dimensional RGB images are vulnerable to background disturbance, light, environment, and other factors that interfere with human target detection. In recent years, more and more researchers have begun to use fuzzy mathematics theory to identify human behaviors. The plantar pressure data under different motion modes were collected through experiments, and the current gait information was analyzed. The key gait events including toe-off and heel touch were identified by dynamic baseline monitoring. For the error monitoring of key gait events, the screen window is used to filter the repeated recognition events in a certain period of time, which greatly improves the recognition accuracy and provides important gait information for motion pattern recognition. The similarity matching is performed on each template, the correct rate of motion feature extraction is 90.2%, and the correct rate of motion pattern recognition is 96.3%, which verifies the feasibility and effectiveness of human motion recognition based on fuzzy theory. It is hoped to provide processing techniques and application examples for artificial intelligence recognition applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据