4.5 Article

From wave-particle duality to wave-particle-mixedness triality: an uncertainty approach

期刊

出版社

IOP Publishing Ltd
DOI: 10.1088/1572-9494/ac53a2

关键词

wave-particle duality; complementarity; mixedness; uncertainty; triality

资金

  1. National Key R&D Program of China [2020YFA0712700]
  2. Fundamental Research Funds for the Central Universities [FRF-TP-19-012A3]
  3. National Natural Science Foundation of China [11 875 317, 61 833 010]

向作者/读者索取更多资源

This paper explores the nature of wave-particle duality and interprets it as information conservation in a multi-path interferometer. By introducing the concept of variance, a resolution of unity is established to quantify the relationship between wave feature, particle feature, and mixedness of a quantum state. This approach refines conventional methods for dealing with wave-particle duality and highlights the importance of information.
The wave-particle duality, as a manifestation of Bohr's complementarity, is usually quantified in terms of path predictability and interference visibility. Various characterizations of the wave-particle duality have been proposed from an operational perspective, most of them are in forms of inequalities, and some of them are expressed in forms of equalities by incorporating entanglement or coherence. In this work, we shed different insights into the nature of the wave-particle duality by casting it into a form of information conservation in a multi-path interferometer, with uncertainty as a unified theme. More specifically, by employing the simple yet fundamental concept of variance, we establish a resolution of unity, which can be interpreted as a complementarity relation among wave feature, particle feature, and mixedness of a quantum state. This refines or reinterprets some conventional approaches to wave-particle duality, and highlights informational aspects of the issue. The key idea of our approach lies in that a quantum state, as a Hermitian operator, can also be naturally regarded as an observable, with measurement uncertainty (in a state) and state uncertainty (in a measurement) being exploited to quantify particle feature and wave feature of a quantum state, respectively. These two kinds of uncertainties, although both are defined via variance, have fundamentally different properties and capture different features of a state. Together with the mixedness, which is a kind of uncertainty intrinsic to a quantum state, they add up to unity, and thus lead to a characterization of the wave-particle-mixedness complementarity. This triality relation is further illustrated by examples and compared with some popular wave-particle duality or triality relations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据