4.7 Article

Onset of chaos in nano-resonators based on strain gradient theory: Numerical analysis

出版社

ELSEVIER
DOI: 10.1016/j.cnsns.2021.105864

关键词

Nano-resonator; Chaotic vibration; Size effect; Numerical analysis

向作者/读者索取更多资源

The paper investigates the impact of size on the chaotic region of nano-resonators and finds that the chaotic region in the bifurcation diagram varies significantly with changes in bias voltage. Lyapunov exponent is used to validate the chaotic region and shows good agreement with the bifurcation diagram.
In recent years, experimental and theoretical studies have shown that size effect is non negligible in mechanical micro-and nano-structures. As a result, classical continuum theory cannot model these structures. To accurately predict the behavior of micro-and nano structures, non-classical continuum theories should be used. In this paper, the effect of size on the chaotic region of resonators is studied by comparing the results of classical and strain gradient theories. A bifurcation diagram and Lyapunov exponent are used for detecting chaos in nano-resonators. It is shown that the effect of size on the chaotic region in bifurcation diagram varies significantly depending on the bias voltage. Lyapunov exponent is utilized to validate the chaotic region and it is in best agreement with bifurcation diagram. For some DC voltage values, size effect can eliminate chaotic vibrations while in higher DC voltages, it can result in chaos at much lower amplitudes than those predicted by classical theories. Dynamic behaviors of nano-resonators are categorized based on their bias voltages and their chaotic behaviors are analyzed based on classical and non-classical theories in detail. The obtained numerical results are compared with Melnikov and Maximum Velocity methods and it is shown that all methods predict the lower critical actuation amplitude for strain gradient theory. (c) 2021 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据