4.6 Article

Small Random Angular Variations in Pelvic Tilt and Lower Extremity Can Cause Error in Static Image-based Preoperative Hip Arthroplasty Planning: A Computer Modeling Study

期刊

CLINICAL ORTHOPAEDICS AND RELATED RESEARCH
卷 480, 期 4, 页码 818-828

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/CORR.0000000000002106

关键词

-

向作者/读者索取更多资源

The study found that a combined effect of 2 to 3 degrees of change in multiple pelvic tilt or hip alignment angles relative to what is measured on a single static radiographic image might result in prosthetic impingement.
Background Many THA simulation models rely on a limited set of preoperative static radiographs to replicate sagittal pelvic tilt during functional positions and to recommend an implant orientation that minimizes the risk of prosthetic impingement. However, possible random changes in pelvic or lower extremity angular motions and the effect of coronal and axial pelvic tilt are not included in these preoperative models. Questions/purposes (1) Can prosthetic impingement occur if the pelvic tilt or lower extremity alignment randomly varies up to +/- 5 degrees from what is measured on a single preoperative static radiographic image? (2) Do changes in coronal and axial pelvic tilt or lower extremity alignment angles have a similar effect on the risk of prosthetic impingement? Methods A de-identified pelvis and lower-body CT image of a male patient without previous THA or lower extremity surgery was used to import the pelvis, femur, and tibia into a verified MATLAB computer model. The motions of standing, pivoting, sitting, sit-to-stand, squatting, and bending forward were simulated. THA implant components included a full hemispherical acetabular cup without an elevated rim, polyethylene liner without an elevated rim, femoral head (diameter: 28 mm, 32 mm, 36 mm, or 40 mm), and a triple-taper cementless stem with three different neck shaft angles (127 degrees, 132 degrees, or 135 degrees) with a trapezoidal neck were used in this model. A static model (cup anatomical abduction 40 degrees, cup anatomical anteversion 20 degrees, stem anatomical anteversion 10 degrees) with a predefined range of sagittal pelvic tilt and hip alignment (0 degrees coronal or axial tilt, without random +/- 5 degrees change) was used to simulate each motion. We then randomly varied pelvic tilt in three different pelvic planes and hip alignments (flexion, extension, abduction, adduction, rotation) up to +/- 5 degrees and assessed the same motions without changing the implant's anatomical orientation. Prosthetic impingement as the endpoint was defined as mechanical abutment between the prosthetic neck and polyethylene liner. Multiple logistic regression was used to investigate the effect of variation in pelvic tilt and hip alignment (predictors) on prosthetic impingement (primary outcome). Results The static-based model without the random variation did not result in any prosthetic impingement under any conditions. However, with up to +/- 5 degrees of random variation in the pelvic tilt and hip alignment angles, prosthetic impingement occurred in pivoting (18 possible combinations), sit-to-stand (106 possible combinations), and squatting (one possible combination) when a 28-mm or a 32-mm head was used. Variation in sagittal tilt (odds ratio 4.09 [95% CI 3.11 to 5.37]; p < 0.001), axial tilt (OR 3.87 [95% CI 2.96 to 5.07]; p < 0.001), and coronal tilt (OR 2.39 [95% CI 2.03 to 2.83]; p < 0.001) affected the risk of prosthetic impingement. Variation in hip flexion had a strong impact on the risk of prosthetic impingement (OR 4.11 [95% CI 3.38 to 4.99]; p < 0.001). Conclusion The combined effect of 2 degrees to 3 degrees of change in multiple pelvic tilt or hip alignment angles relative to what is measured on a single static radiographic image can result in prosthetic impingement. Relying on a few preoperative static radiographic images to minimize the risk of prosthetic impingement, without including femoral implant orientation, axial and coronal pelvic tilt, and random angular variation in pelvis and lower extremity alignment, may not be adequate and may fail to predict prosthetic impingement-free ROM.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据