4.5 Article

Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method

期刊

CHINESE PHYSICS B
卷 31, 期 5, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1674-1056/ac439e

关键词

nanostructures; vapor-liquid-solid growth mode; photoluminescence spectra; fluorescence microscopy

向作者/读者索取更多资源

The photoluminescence properties of zinc silicate nanostructures synthesized by vapor-liquid-solid (VLS) mode using different catalysts (Sn, Ag, and Mn) are explored. The incorporation of different catalysts at different growth temperatures results in wide visible spectral range of photoluminescence emissions. The synthesized nanostructures exhibit distinct colors and potential applications in solid-state lighting and display devices.
We explore the photoluminescence properties of zinc silicate (Zn2SiO4) nanostructures synthesized by vapor-liquid-solid (VLS) mode of growth using three different catalysts (Sn, Ag, and Mn). Different catalysts significantly influence the growth rate which in turn has an impact on the structure and hence the photoluminescence of the prepared zinc silicate nanostructures. Zn2SiO4 has a wide bandgap of about 5.5 eV and in its pure form, it does not emit in visible region due to its inner shell electronic transitions between the 3d(5) energy levels. However, the incorporation of different catalysts (Sn, Ag and Mn) at different growth temperatures into the Zn2SiO4 crystal growth kinetics provides wide visible spectral range of photoluminescence (PL) emissions. PL analysis shows broad multi-band spectrum in the visible region and distinct colors (red, yellow, green, blue, cyan and violet) are obtained depending on the crystalline structure of the prepared nanostructures. The allowed transitions due to the effect of different catalysts on zinc silicate lattice offer a huge cross-section of absorption that generates strong photoluminescence. The correlation between the structural and optical properties of the synthesized nanostructures is discussed in detail. The synthesized photoluminescent nanostructures have potential applications in solid-state lighting and display devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据