4.7 Article

Electrokinetic combined peroxymonosulfate (PMS) remediation of PAH contaminated soil under different enhance methods

期刊

CHEMOSPHERE
卷 286, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.131595

关键词

Electrokinetic remediation; Peroxymonosulfate; PAHs; Soil

资金

  1. National Key R&D Pro-gram of China [2018YFC1802005]
  2. National Natural Science Foundation of China [41471261]

向作者/读者索取更多资源

PMS showed higher removal efficiencies for PAHs contaminated soil compared to PS, indicating its superior oxidation capacity. The use of enhancements increased the removal efficiency for PAHs by 0.33 to 2.10 times, with the highest efficiency achieved at a fixed catholyte pH of 4.
Because of the high hydrophobicity, low volatility, and high sorption capacity of PAHs, their remediation in contaminated soil is challenging. Electrokinetic (EK) enhanced chemical remediation is an emerging dual technology employed in this study, using a new oxidant peroxymonosulfate (PMS) to remediate PAHs contaminated soil. Here, PMS migration under electric field and the remediation efficiency for the PAHs polluted soil were assessed. We observed that the PMS removal efficiencies (59.7%-82.8%) were higher than those with persulfate (PS) (53.9%-78.5%), indicating PMS's superior oxidation capacity for PAHs. Although oxidant PMS can decontaminate PAHs in polluted soils, its removal of PAHs was only 11.0% without the enhanced methods. The enhancements increased the removal efficiency for PAHs from 0.33 to 2.10 times. At fixed catholyte pH of 4, the highest removal efficiency (34.1%) was achieved because it enhanced PMS migration from cathode to anode. These findings suggested that PMS was a potential oxidant for EK remediation, and some enhancements must be applied in EK combined PMS remediation PAHs polluted soil.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据