4.7 Article

Copper ferrite nanoparticles induced cytotoxicity and oxidative stress in Channel catfish ovary cells

期刊

CHEMOSPHERE
卷 287, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.132166

关键词

Channel catfish ovary cells; Copper ferrite nanoparticles; Cytotoxicity; Oxidative stress

资金

  1. DST-SEED Govt. of India [SP/YO/2019/1283]
  2. SERB, India [SRG/2019/001023]
  3. SRMIST

向作者/读者索取更多资源

The study found that exposure to copper ferrite nanoparticles led to a decrease in cell survival, increased oxidative stress, decreased antioxidant capacity, and morphological changes in CCO cells. The research also delves into the detailed mechanism of toxicity of CuFe2O4NPs in other model cell lines to assess the risk to inhabiting organisms.
Nanomaterials are the sixth most emerging contaminants that are entering into aquatic habitat posing a risk to the inhabiting organisms. Nanoparticles of copper ferrite have been extensively used in biomedical applications. However, very limited studies are available on the cytotoxicity evaluation of copper ferrite nanoparticles (CuFe2O4NPs) on different cell lines. The current work investigates on the cytotoxicity, oxidative stress and morphological variations triggered by CuFe2O4NPs in Channel catfish ovary (CCO) cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT), neutral red uptake (NRU), lipid peroxidation (LPO), catalase (CAT), reduced glutathione (GSH), glutathione sulfotransferase (GST) and glutathione peroxidase (GPX) assays after 24 h of treatment. Dose dependent decline in cell survival was noticed in MTT and NRU assays. A significant increase in LPO, GST and GPX was observed in CCO cells exposed to CuFe2O4NPs after 24 h of treatment. However, the CAT and GSH levels in CCO cells exposed to CuFe2O4NPs decreased significantly after 24 h. The CCO cells exposed to 10 mu g/mL concentration of CuFe2O4NPs for 24 h showed remarkable changes in their morphology. Further, the study also describes the detailed mechanism of toxicity of CuFe2O4NPs in other model cell lines to probe the risk of inhabiting organisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据