4.7 Article

Synthesis and characterization of nano zerovalent iron-kaolin clay (nZVI-Kaol) composite polyethersulfone (PES) membrane for the efficacious As2O3 removal from potable water samples

期刊

CHEMOSPHERE
卷 288, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.132405

关键词

Ferrous nanoparticle; Membrane; Composite; Arsenic; ICP-OES

资金

  1. CSIR-HRDG, New Delhi, India [09/971(0004)/2011-EMRI]

向作者/读者索取更多资源

In this study, zero-valent iron-kaolinite composite membranes were successfully synthesized for the removal of As2O3 from water samples. FESEM analysis revealed the porous structure and increased hydrophilicity of the membranes. Post-filtration, there was a maximum reduction of 50% in arsenic concentration in the filtered water samples.
In this study, Kaolin clay, a mining material, was used as an abundant and available mineral as zero-valent ironkaolinite composites for As2O3 removal from the water samples. The composites were made by the sodium borohydrate reduction method. The existence of Fe0 in the produced composites was confirmed by X-ray diffraction (XRD) and Fourier-Transform Infrared Spectroscopy (FTIR) analysis. The membranes are prepared with zerovalent nano Iron-Kaolin and PES. The synthesized composites were then mixed with polyethersulfone to prepare the membranes S1, S2, and S3 with varying compositions. Field Emission Scanning Electron Microscopy (FESEM) analysis of the produced membranes showed the porous structure and the contact angle of membranes increased the hydrophilicity. The membranes were explored for the removal of As2O3 (AsIII) in potable water samples. The filtration studies were carried out using the syringe filtration setup. Analysis of the arsenic (III) solution was carried out, before and after the filtration process using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), which showed a maximum of 50% reduction in its original concentration. The filtered membrane is analyzed for arsenic by Energy Dispersive X-ray (EDX) technique. Thus, the synthesized membrane effectively sieves the arsenic in water samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据