4.7 Article

Facile synthesis of nitrogen-doped porous carbon materials using waste biomass for energy storage applications

期刊

CHEMOSPHERE
卷 289, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.133225

关键词

Lotus plant; Lotus carbon; Carbonization; Supercapacitor; Renewable energy storage

资金

  1. National Research Foundation of Korea (NRF) - Korean government MSIT [2021R1A2B5B02002436]

向作者/读者索取更多资源

A simple, low-cost, and green route for preparing lotus carbon (LC) materials from different parts of the lotus plant has been reported. The fruit-carbon (FR-carbon) derived from lotus fruits showed promising performance in supercapacitor applications, with a high specific capacitance, good rate performance, and cycling stability.
A simple, low-cost, and green route for the preparation of lotus carbon (LC) materials using lotus parts including leaves, flowers, fruits (seed pods), and stems as a renewable precursor is reported. Different porous carbons, leafcarbon (LF-carbon), flower-carbon (FL-carbon), fruit-carbon (FR-carbon), and stem-carbon (ST-carbon) were synthesized from different parts of the lotus plant by simple carbonization method. The as-synthesized LC materials were well-characterized by many techniques such as electron microscopy and spectroscopy techniques, Xray diffraction, and BET-surface area analysis. These techniques confirmed the porous structure of LC materials and the existence of heteroatoms in the prepared LC materials. The mesoporous structure of LC materials suggested employing it for the supercapacitor applications. The obtained FR-Carbon exhibits a high specific capacitance of 160 F/g in a three-electrode system in an aqueous 1 M H2SO4 electrolyte with a high rate performance of 52% retention from 0.5 to 5.0 A/g with good cycling stability of 95%. These results indicate that the porous carbon derived from lotus fruits is a potential electrode material for high-performance supercapacitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据