4.7 Article

Activation of peroxymonosulfate by molybdenum disulfide-mediated traces of Fe(III) for sulfadiazine degradation

期刊

CHEMOSPHERE
卷 283, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.131212

关键词

MoS2; Ferric iron; Sulfadiazine; High-valent iron-oxo species; Radicals

资金

  1. National Natural Science Foundation of China [42077340, 52000080]
  2. Guangdong Basic and Applied Basic Research Foundation [2019A1515110988]
  3. Key R&D program of Guangxi Province, China [2018AB36018]

向作者/读者索取更多资源

In this study, molybdenum disulfide (MoS2) was found to significantly enhance the activation of peroxymonosulfate (PMS) by Fe(III), leading to the generation of hydroxyl radicals and sulfate radicals as key reactive species for the degradation of sulfadiazine.
The activation of persulfate by ferrous iron (Fe(II)) is of great interest to the environmental remediation community, but the reduction of ferric iron (Fe(III)) to Fe(II) is slow and the accumulation of iron sludge resulted from the precipitation of Fe(III) is a great concern. Here, molybdenum disulfide (MoS2) was studied as a co-catalyst to improve the activation of peroxymonosulfate (PMS) by Fe(III) for sulfadiazine (SDZ) degradation and different characterization technologies were used to reveal the reactive species. The results showed that a strong synergy existed between MoS2 and Fe(III); approximately 94.3% of the SDZ was removed by MoS2-Fe(III)-PMS after reaction for 30 min, while only 8.5% and 56.4% of the SDZ was removed by Fe(III)-PMS and MoS2 PMS, respectively. Both hydroxyl radicals and sulfate radicals were generated and the latter was the primary species. In addition to the radicals, singlet oxygen was found to be generated and contributed to the degradation of SDZ. The chemical probe reaction with methyl phenyl sulfoxide showed that the generation of high-valent iron-oxo species was not obvious by MoS2-Fe(III)-PMS under both acidic and neutral conditions. MoS2 had good stability. No noticeable deactivation was observed during the 1st to 5th run and no obvious oxidation of surface Mo(IV) occurred. Based on the characterization of catalyst and oxidizing species, a mechanism for the activation of PMS by MoS2-Fe(III) was proposed. The results from this study are expected to clarify the reactive species and deepen the understanding of MoS2-promoted persulfate activation by Fe(II)/Fe(III).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据