4.7 Article

The performance and pathway of indole degradation by ionizing radiation

期刊

CHEMOSPHERE
卷 287, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.131983

关键词

Advanced oxidation; Indole; Nitrogen heterocyclic compound; Degradation; Coal chemical wastewater

资金

  1. National Natural Science Foundation of China [51978368]

向作者/读者索取更多资源

Ionizing radiation is an alternative technology for the degradation of indole in coal chemical wastewater. The study found that under specific conditions, the removal efficiency of indole can reach 99.2%, with the involvement of various reactive species and intermediate products during degradation.
Indole is a typical recalcitrant aromatic nitrogen heterocyclic compound, which usually exists in coal chemical wastewater, and cannot be effectively removed by conventional wastewater treatment process. In this study, ionizing radiation was applied for the degradation of indole in aqueous solution. The effect of absorbed dose (1, 2, 3 and 5 kGy), initial concentration of indole (10, 20, 40 and 100 mg/L) and pH (3, 5, 7 and 9) on the degradation of indole was investigated. The results showed that the removal efficiency of indole was 99.2% at its initial concentration of 10 mg/L, absorbed dose of 2 kGy, and pH of 5. In addition, quenching experiments confirmed that three reactive species, including hydroxyl radical, hydrated electron and hydrogen radical, contributed to indole degradation. Five intermediate products were identified during indole degradation, including 3-methylindole, 3-methylinodle radicals, hydroxylation inodole, anilinoethanol and isatoic acid. The possible pathway of indole degradation was proposed. The acute toxicity and chronic toxicity of intermediate products of indole degradation were significantly reduced, except for 3-methylindole. In summary, ionizing radiation is alternative technology for the degradation of indole in coal chemical wastewater.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据