4.7 Article

Effect of using Celosia argentea grown from seeds treated with a magnetic field to conduct Cd phytoremediation in drought stress conditions

期刊

CHEMOSPHERE
卷 280, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.130724

关键词

Magnetic field; Drought; Phytoremediation; Heavy metal; Celosia argentea

资金

  1. National Natural Science Foundation of China [21876014, 41807186]

向作者/读者索取更多资源

The study revealed that under long-term drought stress, external magnetic field treatment had a positive impact on the growth and remediation efficiency of Celosia argentea, alleviating the detrimental effects induced by drought and potentially increasing food security.
The mechanisms of the stimulatory effect of external magnetic fields on plant growth have been revealed; however, the role of magnetic fields in the efficiency of phytoremediation with Celosia argentea grown under drought stress which results in detrimental influences on food security has not been reported. Therefore, this study evaluated the physiological responses of C. argentea to the interactions between exposure to a magnetic field and drought stress. Compared with a control, a drought treatment negatively affected the dry weight, transpiration rate, and Cd extraction efficiency of the species and caused oxidative damage in plant cells, as manifested by the increase in malondialdehyde levels and antioxidant enzyme activities. The biomass production, pigment levels, Cd content, and phytoremediation efficiency of the plant were positively affected by all magnetic field treatments compared to the control. All magnetic treatments, except those at 30 mT, alleviated the detrimental effects induced by a 10-day irrigation regime by enhancing the dry weight, chlorophyll content, and activities of antioxidant enzymes in the leaves of the plant. In terms of the interaction between pre-sowing magnetic field seed treatment and drought stress, a 100 mT treatment increased most of the measured parameters, particularly under a 3-day irrigation regime; this corresponded to the optimal phytoremediation efficiency. The results suggest that magnetic field treatment is a novel, economical, and practicable strategy by which to increase the efficiency of phytoremediation using C. argentea under drought stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据