4.8 Review

Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships

期刊

CHEMICAL SOCIETY REVIEWS
卷 51, 期 2, 页码 672-719

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0cs01599g

关键词

-

资金

  1. National Natural Science Foundation of China [51978367]

向作者/读者索取更多资源

Progress has been made in tailored design of NF membranes by optimizing interfacial polymerization techniques, adopting new manufacturing processes and materials. The property-performance relationships based on solvent/solute mass transfer theories and mathematical models have been discussed, along with conclusions on membrane structural and physicochemical parameter regulation to improve membrane separation performance, as well as existing and potential applications of NF membranes in water treatment processes. Challenges and prospects of tailored design of NF membranes for water treatment applications are also highlighted.
Tailored design of high-performance nanofiltration (NF) membranes is desirable because the requirements for membrane performance, particularly ion/salt rejection and selectivity, differ among the various applications of NF technology ranging from drinking water production to resource mining. However, this customization greatly relies on a comprehensive understanding of the influence of membrane fabrication methods and conditions on membrane properties and the relationships between the membrane structural and physicochemical properties and membrane performance. Since the inception of NF, much progress has been made in forming the foundation of tailored design of NF membranes and the underlying governing principles. This progress includes theories regarding NF mass transfer and solute rejection, further exploitation of the classical interfacial polymerization technique, and development of novel materials and membrane fabrication methods. In this critical review, we first summarize the progress made in controllable design of NF membrane properties in recent years from the perspective of optimizing interfacial polymerization techniques and adopting new manufacturing processes and materials. We then discuss the property-performance relationships based on solvent/solute mass transfer theories and mathematical models, and draw conclusions on membrane structural and physicochemical parameter regulation by modifying the fabrication process to improve membrane separation performance. Next, existing and potential applications of these NF membranes in water treatment processes are systematically discussed according to the different separation requirements. Finally, we point out the prospects and challenges of tailored design of NF membranes for water treatment applications. This review bridges the long-existing gaps between the pressing demand for suitable NF membranes from the industrial community and the surge of publications by the scientific community in recent years.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据