4.5 Article

Intra- and Inter-Species Variability in Urinary N7-(1-Hydroxy-3-buten-2-yl)guanine Adducts Following Inhalation Exposure to 1,3-Butadiene

期刊

CHEMICAL RESEARCH IN TOXICOLOGY
卷 34, 期 11, 页码 2375-2383

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrestox.1c00291

关键词

-

资金

  1. National Institute of Environmental Health Sciences [R01 ES029911, T32 ES026568]

向作者/读者索取更多资源

The study focused on examining the variability of urinary N7-(1-hydroxy-3-buten-2-yl)guanine (EB-GII) DNA adduct, a biomarker of exposure to 1,3-butadiene, in mice, rats, and humans. Variability in EB-GII levels in mice was influenced by sex and strain, with metabolic saturation possibly contributing to modest variability. In humans, despite larger variability, urinary EB-GII levels were consistent with estimates for other chemicals based on non-cancer endpoints data.
1,3-Butadiene is a known carcinogen primarily targeting lymphoid tissues, lung, and liver. Cytochrome P450 activates butadiene to epoxides which form covalent DNA adducts that are thought to be a key mechanistic event in cancer. Previous studies suggested that inter-species, -tissue, and -individual susceptibility to adverse health effects of butadiene exposure may be due to differences in metabolism and other mechanisms. In this study, we aimed to examine the extent of inter-individual and inter-species variability in the urinary N7-(1-hydroxy-3-buten-2-yl)guanine (EB-GII) DNA adduct, a well-known biomarker of exposure to butadiene. For a population variability study in mice, we used the collaborative cross model. Female and male mice from five strains were exposed to filtered air or butadiene (590 ppm, 6 h/day, 5 days/week for 2 weeks) by inhalation. Urine samples were collected, and the metabolic activation of butadiene by DNA-reactive species was quantified as urinary EB-GII adducts. We quantified the degree of EB-GII variation across mouse strains and sexes; then, we compared this variation with the data from rats (exposed to 62.5 or 200 ppm butadiene) and humans (0.004-2.2 ppm butadiene). We show that sex and strain are significant contributors to the variability in urinary EB-GII levels in mice. In addition, we find that the degree of variability in urinary EB-GII in collaborative cross mice, when expressed as an uncertainty factor for the inter-individual variability (UFH), is relatively modest (<= threefold) possibly due to metabolic saturation. By contrast, the variability in urinary EBGII (adjusted for exposure) observed in humans, while larger than the default value of 10-fold, is largely consistent with UFH estimates for other chemicals based on human data for non-cancer endpoints. Overall, these data demonstrate that urinary EB-GII levels, particularly from human studies, may be useful for quantitative characterization of human variability in cancer risks to butadiene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据