4.7 Article

Particle behaviours of biomass gasification in a bubbling fluidized bed

期刊

CHEMICAL ENGINEERING JOURNAL
卷 428, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.131847

关键词

CFD-DEM; Heat and mass transfer; Biomass gasification; Mixing and dispersion

资金

  1. National Science Fund for Distinguished Young Scholars [51925603]
  2. National Key Research and Develop-ment Plan of China [2017YFB0601805, 2017YFE0112500]
  3. National Natural Science Foundation of China [51806192]

向作者/读者索取更多资源

The study uses a particle-scale computational fluid dynamics-discrete element method to investigate biomass gasification in a bubbling fluidized bed reactor, exploring the effects of operating temperature and steam to biomass ratio on particle mixing and heat transfer modes. Increasing operating temperature and S/B ratio can enhance biomass mixing index and promote chemical reactions and heat transfer.
Biomass gasification in a bubbling fluidized bed (BFB) reactor is numerically studied based on a particle-scale computational fluid dynamics-discrete element method (CFD-DEM), with thermochemical and polydispersity effects featuring. After model validation, the particle-scale information (e.g., particle motions, particle mixing, solid dispersion, and heat transfer contribution) are thoroughly explored with the discussion of the effects of several critical operating parameters on particle behaviours. The results show that the middle dense region has the highest biomass pyrolysis reaction rate due to the vigorous particle motion. Sand and biomass particles show synchronous horizontal motions, and the solid vertical dispersion coefficients are much higher than the solid horizontal ones, denoting that the vertically introduced gas flow dominates bed hydrodynamics. A higher operating temperature causes a higher solid dispersion coefficient. Elevating temperature and steam to biomass ratio (S/B) first increases and then decreases the particle mixing index. Convection plays a dominant role during the biomass gasification process, followed by the radiation and heat of reaction. The conduction accounts for the smallest proportion and can be neglected. Increasing operating temperature promotes chemical reactions, biomass temperature, and all heat transfer modes. Increasing S/B promotes biomass motions and gasification reactions, leading to more heat consumed and biomass temperature decrease. Decreasing biomass temperature results in a larger temperature difference between biomass particles and bed material, which enhances the conduction, convection, and radiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据