4.7 Article

Interface defect chemistry enables dendrite-free lithium metal anodes

期刊

CHEMICAL ENGINEERING JOURNAL
卷 437, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2022.135109

关键词

Lithium metal anode; Defect chemistry; Artificial layer; Lithium dendrite; Dendrite-free electrodeposition

资金

  1. National Natural Science Foundation of China [21875057]
  2. Natural Science of Heilongjiang Province [LH2019B008]
  3. Opening Project of State Key Laboratory of Advanced Chemical Power Sources

向作者/读者索取更多资源

An artificial protective layer with interface defects is proposed to improve the cycling stability and rate performance of lithium metal anodes. The study focuses on titanium oxide (TiO2) and demonstrates that the interfacial oxygen-deficient TiO2 coating (H-TiO2) promotes lithium ion diffusion kinetics and prevents lithium dendrite formation. The H-TiO2 protective layer enables lithium metal anodes to have ultra-long cycling stability and improves the performance of full cells paired with LiFePO4 cathode.
Lithium dendrite can cause battery failure and safety risks, which is a major obstacle for the commercial application of lithium metal anodes. Herein, an artificial protective layer with interface defects is proposed to promote the interfacial electrochemical kinetics and achieve the ultra-long electrochemical plating/stripping stability. Taking titanium oxide (TiO2) as a research object, the interfacial oxygen-deficient TiO2 coating (H-TiO2) shows the faster lithium ion diffusion kinetics compared to the pristine TiO2 layer and fresh lithium metal anode, and this interfacial defect chemistry can facilitate homogenous lithium ion flux and regulate lithium metal dendrite-free electrodeposition. Specifically, the H-TiO2 protective layer endows lithium metal anodes ultra-long cycling stability up to 1990 h at 2.0 mA cm(-2) with a low overpotential of 27.5 mV. Remarkably, the artificial H-TiO2 coating improves the cycling stability (97.5 mAh g(-1) after 350cycles) and rate performance (68.5 mAh g(-1) at 4.0C) of full cells paired with LiFePO4 cathode. More importantly, this work opens a door for regulating lithium metal reversible electrodeposition by interface defect chemistry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据