4.7 Article

Flame-Retardant multifunctional epoxy resin with high performances

期刊

CHEMICAL ENGINEERING JOURNAL
卷 427, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.132031

关键词

Epoxy resin; High performance; Flame retardancy; High toughness; Dielectric properties

资金

  1. National Natural Science Foundation of China [51822304, 51991351, 51773137, 21975166, 51991350]
  2. Fundamental Research Funds for the central Universities
  3. Young Elite Scientists Sponsorship Program by CAST

向作者/读者索取更多资源

In this study, a high-performance and multifunctional epoxy resin EP-DPI was successfully synthesized by incorporating a functional molecule DPI, which exhibited excellent mechanical performance, high glass transition temperature, transparency, UV-shielding effect, and anti-ignition properties. This work opens up a new strategy for developing novel high-performance and multifunctional EPs with potential versatile applications in various fields.
High-performance and multifunctional epoxy resins (EPs) are of great use in the booming electric & electronic and 5G fields, however their fabrication shows huge challenges. Herein, through a facile strategy by simply incorporating a functional molecule DPI (phosphaphenanthrene polyethylenimine), which possessed a unique structure with hyperbranched polyethyleneimine as flexible inner core and phosphaphenanthrene groups as rigid outer shell, a high-performance and multifunctional epoxy resin was successfully fabricated. The hyperbranched rigid-flexible structure of DPI endowed the resultant thermoset EP-DPI with superb mechanical performance and high glass transition temperature, for which, at a low DPI content (<= 4 wt%), EP-DPI exhibited 160%, 40%, and 31% improvement in impact toughness, tensile strength, and flexural strength compared with neat EP. At the same time, the good compatibility between DPI and the EP matrix enabled EP-DPI to be highly transparent, and the aromatic phosphorus structure endowed EP-DPI with excellent UV-shielding effect in the UV-A band. The dielectric performance of EP-DPI was enhanced due to the unique structure of DPI and its interaction with the EP matrix. Furthermore, the phosphaphenanthrene groups endowed EP-DPI with excellent anti-ignition, selfextinguishing, and low heat release during combustion. This work opens up a new strategy for developing novel high-performance and multifunctional EPs with potential versatile applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据