4.7 Article

A selenophene-containing near-infrared unfused acceptor for efficient organic solar cells

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Chemistry, Multidisciplinary

An A-D-A′-D-A type unfused nonfullerene acceptor for organic solar cells with approaching 14% efficiency

Xingzheng Liu et al.

Summary: In recent years, significant improvements have been made in the power conversion efficiency (PCE) of organic solar cells (OSCs) by exploring new active layer materials, especially high efficiency acceptors. Unfused-ring acceptors (UFAs) have attracted attention for their advantages of simple synthesis and low cost compared to fused-ring acceptors. The synthesis of a new UFA BTzO-4F incorporating benzotriazole moiety and intramolecular noncovalent interactions has led to a record PCE of 13.8% for UFAs, demonstrating the great potential of UFAs for high performance OSCs.

SCIENCE CHINA-CHEMISTRY (2021)

Article Multidisciplinary Sciences

Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies

Ming Zhang et al.

Summary: By using quaternary blends, double cascading energy level alignment is achieved in bulk heterojunction organic photovoltaic active layers, optimizing light absorption, carrier transport, and charge-transfer state energy levels for higher power conversion efficiencies. The chemical structures of donors and acceptors allow control over electronic structure and charge-transfer state energy levels, enabling manipulation of hole-transfer rates, carrier transport, and non-radiative recombination losses.

NATURE COMMUNICATIONS (2021)

Review Chemistry, Physical

A History and Perspective of Non-Fullerene Electron Acceptors for Organic Solar Cells

Ardalan Armin et al.

Summary: Organic solar cells have evolved from relying on fullerenes as acceptors to the emergence of non-fullerene acceptors (NFAs) which have significantly improved cell efficiencies. However, NFAs challenge the traditional understanding of organic solar cell operation, requiring rethinking of morphology, charge generation, and recombination.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Multidisciplinary

Layer-by-Layer Processed Ternary Organic Photovoltaics with Efficiency over 18%

Lingling Zhan et al.

Summary: This study proposes and demonstrates a method to optimize the morphology of the active layer in organic photovoltaic devices by combining the layer-by-layer (LbL) procedure and the ternary strategy. By adding an asymmetric electron acceptor to the binary donor:acceptor host, a vertical phase distribution is formed, leading to improved efficiency in OPV devices.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Selenium-Substituted Non-Fullerene Acceptors: A Route to Superior Operational Stability for Organic Bulk Heterojunction Solar Cells

Chiara Labanti et al.

Summary: The research found that outer selenation in ITIC NFA can significantly increase device lifetime by rigidifying the molecular structure through the action of selenium atoms, promoting charge delocalization, and enhancing intermolecular interactions. Methylation further stabilizes acceptor domains, enabling them to resist light-induced morphological changes, resulting in improved device stability.

ACS NANO (2021)

Article Chemistry, Multidisciplinary

Multi-Selenophene-Containing Narrow Bandgap Polymer Acceptors for All-Polymer Solar Cells with over 15 % Efficiency and High Reproducibility

Qunping Fan et al.

Summary: The newly developed multi-selenophene-containing PSMA material PFY-3Se shows outstanding performance in all-polymer solar cells, with high efficiency, low energy loss, and good batch-to-batch reproducibility, indicating great potential for practical applications.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Simple Non-Fused Electron Acceptors Leading to Efficient Organic Photovoltaics

Tian-Jiao Wen et al.

Summary: Despite recent progress, organic photovoltaics (OPVs) still need to work on balancing efficiency, stability, and cost. This study developed two non-fused electron acceptors which, when blended with a specific polymer, achieved the highest reported efficiency for fully unfused electron acceptors.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Engineering, Environmental

18.02% Efficiency ternary organic solar cells with a small-molecular donor third component

Xianjie Chen et al.

Summary: The ternary strategy using deep-lying HOMO energy level small molecule donor BPR-SCl in the PM6:BTP-eC9 host binary blend has successfully enhanced the power conversion efficiency of organic solar cells. The addition of BPR-SCl improved crystallinity of the photoactive layers and slightly reduced donor/acceptor phase separation scale, resulting in higher PCE, enhanced V-oc and J(sc) in the TOSCs. This study provides new insights into achieving high-performance TOSCs with the highest reported PCE using a small molecule donor as the third component.

CHEMICAL ENGINEERING JOURNAL (2021)

Article Energy & Fuels

Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells

Chao Li et al.

Summary: The molecular design of acceptor and donor molecules has significantly advanced organic photovoltaics. By introducing branched alkyl chains in non-fullerene acceptors, favorable morphology in the active layer can be achieved, leading to a certified device efficiency of 17.9%. This modification can completely alter the molecular packing behavior of non-fullerene acceptors, resulting in improved structural order and charge transport in thin films.

NATURE ENERGY (2021)

Article Chemistry, Multidisciplinary

A Synergistic Strategy of Manipulating the Number of Selenophene Units and Dissymmetric Central Core of Small Molecular Acceptors Enables Polymer Solar Cells with 17.5 % Efficiency

Can Yang et al.

Summary: By using a dissymmetric backbone and selenophene substitution on the central core, symmetric or dissymmetric A-DA'D-A type non-fullerene small molecular acceptors with varying numbers of selenophene were synthesized, leading to improved device performance and efficiency.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

A Synergistic Strategy of Manipulating the Number of Selenophene Units and Dissymmetric Central Core of Small Molecular Acceptors Enables Polymer Solar Cells with 17.5% Efficiency

Can Yang et al.

Summary: The synthesis of symmetric or dissymmetric A-DA'D-A type non-fullerene small molecular acceptors (NF-SMAs) using a dissymmetric backbone and selenophene substitution on the central core leads to improved optical and electrical properties. Increasing the number of selenophene results in a red-shifted absorption, as well as larger electron mobility and crystallinity in the thin film. The combination of dissymmetric core and precise replacement of selenophene effectively enhances charge transport characteristics in binary polymer solar cells.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Asymmetric Acceptors with Fluorine and Chlorine Substitution for Organic Solar Cells toward 16.83% Efficiency

Tao Liu et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Multidisciplinary Sciences

18% Efficiency organic solar cells

Qishi Liu et al.

SCIENCE BULLETIN (2020)

Article Chemistry, Multidisciplinary

A Fully Non-fused Ring Acceptor with Planar Backbone and Near-IR Absorption for High Performance Polymer Solar Cells

Ya-Nan Chen et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Multidisciplinary

Selenium Heterocyclic Electron Acceptor with Small Urbach Energy for As-Cast High-Performance Organic Solar Cells

Zhenzhen Zhang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Review Chemistry, Multidisciplinary

Acceptor-donor-acceptor type molecules for high performance organic photovoltaics - chemistry and mechanism

Xiangjian Wan et al.

CHEMICAL SOCIETY REVIEWS (2020)

Article Chemistry, Physical

Molecular engineering of acceptors to control aggregation for optimized nonfullerene solar cells

Linqiang Yang et al.

JOURNAL OF MATERIALS CHEMISTRY A (2020)

Article Nanoscience & Nanotechnology

Simple and Versatile Non-Fullerene Acceptor Based on Benzothiadiazole and Rhodanine for Organic Solar Cells

Jongho Ahn et al.

ACS APPLIED MATERIALS & INTERFACES (2019)

Article Multidisciplinary Sciences

Simple non-fused electron acceptors for efficient and stable organic solar cells

Zhi-Peng Yu et al.

NATURE COMMUNICATIONS (2019)

Article Chemistry, Physical

A Simple Electron Acceptor with Unfused Backbone for Polymer Solar Cells

Zhang Zhongqiang et al.

ACTA PHYSICO-CHIMICA SINICA (2019)

Review Chemistry, Physical

Organic solar cells based on non-fullerene acceptors

Jianhui Hou et al.

NATURE MATERIALS (2018)

Review Chemistry, Physical

Recent advances in electron acceptors with ladder-type backbone for organic solar cells

Zuo-Quan Jiang et al.

JOURNAL OF MATERIALS CHEMISTRY A (2018)

Review Chemistry, Multidisciplinary

Molecular Aggregate Photophysics beyond the Kasha Model: Novel Design Principles for Organic Materials

Nicholas J. Hestand et al.

ACCOUNTS OF CHEMICAL RESEARCH (2017)

Article Chemistry, Multidisciplinary

Improved All-Polymer Solar Cell Performance by Using Matched Polymer Acceptor

Shaohua Shi et al.

ADVANCED FUNCTIONAL MATERIALS (2016)

Article Chemistry, Multidisciplinary

An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells

Yuze Lin et al.

ADVANCED MATERIALS (2015)

Article Chemistry, Multidisciplinary

High-performance fullerene-free polymer solar cells with 6.31% efficiency

Yuze Lin et al.

ENERGY & ENVIRONMENTAL SCIENCE (2015)

Article Chemistry, Multidisciplinary

The molecular nature of photovoltage losses in organic solar cells

Cody W. Schlenker et al.

CHEMICAL COMMUNICATIONS (2011)

Article Chemistry, Physical

On the origin of the open-circuit voltage of polymer-fullerene solar cells

Koen Vandewal et al.

NATURE MATERIALS (2009)