4.7 Article

Lowering the voltage-hysteresis of CuS anode for Li-ion batteries via constructing heterostructure

期刊

CHEMICAL ENGINEERING JOURNAL
卷 425, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.130548

关键词

Voltage-hysteresis; Heterostructure; Anode materials; Batteries; Conversion-reaction

资金

  1. Natural Science Foundation of Henan Province [202300410336]
  2. Key Scientific Research Project of Universities in Henan Province [20A150035]
  3. Key Scientific and Technological Project of Henan Province [212102310178]
  4. National Natural Science Foundation of China [21805238]
  5. Nanhu Scholars Program for Young Scholars of XYNU

向作者/读者索取更多资源

This study proposes and successfully verifies the hypothesis of lowering voltage-hysteresis by constructing heterostructures. The CuS/MnS-C HNFs electrode exhibits lower voltage-hysteresis values and the best rate performance among their counterpart electrodes.
Conversion-reaction anode materials always deliver high capacities when used for Li-ion batteries (LIBs). However, the large voltage-hysteresis between the discharge and charge potentials slide down the round-trip efficiency of the electrodes, which restricts their further application on commercial LIBs. Herein, an assumption that lowering the voltage-hysteresis by constructing heterostructure is proposed and further verified by CuS based electrode. As a proof of concept, CuS/MnS heterostructure nanoparticles confined by carbon layers are designed and further crosslinked into a 3D network, constructing CuS/MnS-C heterostructure nanofibers (HNFs). The as-formed heterointerfaces facilitate the charge separation and transfer, and further improve the kinetics. Meanwhile, the confinement and conductive network of the carbon nanofibers improve the structural stability and conductivity of the hybrid electrode. As a result, the voltage-hysteresis values of the CuS anode are lowered to 0.30 and 0.35 V in the well-designed CuS/MnS-C HNFs electrode, much smaller than the original values (0.82 and 0.70 V) in the CuS-C NFs electrode. Moreover, the CuS/MnS-C HNFs electrode exhibits the best excellent rate capability among their counterpart electrodes (493.5 mAh g(-1) at 2.0 A g(-1) with the coulombic efficiency of about 100%). This work would shed light on the development of practical conversion-reaction anode materials with low voltage-hysteresis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据