4.7 Article

Coupling Ru-MoS2 heterostructure with silicon for efficient photoelectrocatalytic water splitting

期刊

CHEMICAL ENGINEERING JOURNAL
卷 423, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.130231

关键词

Charge separation; Electronic properties; Hetero-interface site; Hydrogen evolution reaction; Photoelectrocatalysis

资金

  1. Fundamental Research Funds for the Central Universities [2020XZZX002-07]
  2. Zhejiang Provincial Natural Science Foundation of China [LR17B060003]
  3. Natural Science Foundation of China [21776248, 21676246]

向作者/读者索取更多资源

In this study, a Ru-MoS2 heterostructured catalyst was designed to address the challenges of low charge-separation efficiency and catalytic hydrogen evolution activity in photoelectrochemical water splitting for hydrogen evolution reaction. The engineered electronic structure of Ru-MoS2 significantly decreased charge transfer resistance and optimized electron transportation and Gibbs free energy of hydrogen adsorption, leading to enhanced catalytic HER efficiency. The n+p-Si/Ti/Ru-MoS2 photocathode demonstrated the largest reported photocurrent density for Si-based photocathodes and achieved a high solar-to-hydrogen conversion efficiency.
Photoelectrochemical water splitting for hydrogen evolution reaction (PEC-HER) is always challenged by the low charge-separation efficiency and catalytic hydrogen evolution activity. Herein, we designed a Ru-MoS2 heterostructured catalyst on a titanium (Ti) protecting p-type silicon (n+p-Si) to address these obstacles. The n+p-Si/Ti/ Ru-MoS2 delivers the largest reported photocurrent density for the Si-based photocathode (-43 mA cm-2 at 0 V versus a reversible hydrogen electrode (VRHE)). A considerably high half-cell solar-to-hydrogen conversion efficiency (HC-STH) of 7.28% is achieved at 0.2 VRHE. The excellent performance of n+p-Si/Ti/Ru-MoS2 is benefited from the electronic properties of Ru-MoS2 that dramatically decrease charge transfer resistance, and enhance the built-in electric field at the photoelectrode/electrolyte interface for the charge separation. Significantly, the density functional theory (DFT) calculation further reveals that the engineered electronic structure of the Ru-MoS2 contributes to the improvements in catalytic HER efficiency by optimizing electron transportation and Gibbs free energy of hydrogen adsorption (Delta GH*) on hetero-interface sites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据