4.7 Article

Ru doped graphitic carbon nitride mediated peroxymonosulfate activation for diclofenac degradation via singlet oxygen

期刊

CHEMICAL ENGINEERING JOURNAL
卷 430, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.133174

关键词

Ruthenium catalyst; Peroxymonosulfate; Singlet oxygen; Toxicity

资金

  1. National Natural Science Foundation of China [52070171, 52030003]

向作者/读者索取更多资源

Ruthenium-doped carbon nitride (CNRu) was synthesized and demonstrated to efficiently degrade and detoxify DCF, showing higher activation efficiency of PMS compared to other transition metals doped CN.
Metals doped carbon nitride (CN) is considered as a class of promising efficient catalysts for peroxymonosulfate (PMS) activation in water purification. Herein, ruthenium doped carbon nitride (CNRu) was synthesized via a facile one-pot method, and CNRu was in form of Ru-N2 that could efficiently activate PMS for DCF degradation and detoxification via nonradical pathway. DCF was completely removed within 10 min under the optimized condition in a wide working pH range of 3.00-9.00, while other traditional transition metals (e.g. Fe, Co, Ni, Cu) doped CN showed negligible removal of DCF due to adsorption rather than activation of PMS, which was demonstrated by DFT calculations. CNRu showed high stability and reusability after seven cycles and very few Ru leaching was detected in DCF degradation process. Ru was highly dispersed in form of Ru-N bond via coordinating to pyridine nitrogen, and the electron defect transfer between Ru and coordinated N, rather than redox cycle of Ru, mediated superoxide radicals (O2 center dot- ) evolution, which was further hydrolyzed into singlet oxygen (1O2) and responsible for DCF removal. Thus, the CNRu/PMS system showed high tolerance to inorganic anions. Much lower toxic intermediates/products than DCF were obtained via the strong electrophilic attack reaction between 1O2 and DCF in CNRu/PMS system. This study displayed a new practical application prospect of ruthenium-based materials for high-efficient removal and detoxification of DCF from wastewater.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据