4.7 Article

Fe doped bimetallic HKUST-1 MOF with enhanced water stability for trapping Pb(II) with high adsorption capacity

期刊

CHEMICAL ENGINEERING JOURNAL
卷 430, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.133088

关键词

Metal organic framework; Bimetallic MOF; Doping; HKUST-1; Remediation; Lead removal; Adsorption

资金

  1. IMPRINT [6408]
  2. Department of Industrial and Scientific Research [RES/DSIR/CL/P0013/1617/0029]
  3. SERB-CRG [CRG/2019/006165]

向作者/读者索取更多资源

Doping of iron into HKUST-1 MOF significantly enhanced its hydrostability and lead (II) removal efficiency. Fe doped HKUST-1 MOFs showed greater surface area retention and minimal loss in crystallinity.
HKUST-1 Metal-Organic Framework (MOF), due to its coordinatively unsaturated metal sites, high surface area and microporosity, is one the most prominent MOF candidates. Our study investigates the consequence of doping iron into HKUST-1 MOF on its hydrostability, and demonstrates its usability for Pb(II) removal. A simple one-pot solvothermal process was used to synthesize Fe doped HKUST-1 MOF with varying dopant concentrations of Fe (5-20 mol%). Through various characterisation techniques (XPS, XRD, FTIR, ICP-OES) and MD simulations we demonstrated the incorporation of Fe into the HKUST-1 framework, which happened through Fe substituting the Cu(II) sites. Water stability studies using experimental and modelling approaches demonstrated that partial substituted Fe-HKUST-1 MOFs have a greater surface area retention with very little loss in crystallinity as compared to pristine HKUST-1 MOF. Fe substitution of as low as 5 mol% yielded a significant enhancement in the hydrostability of HKUST-1 MOFs, wherein the structure was intact for up to 10 hrs of water treatment. Similarly, 5 mol% Fe doping had a 53% reduction in the amount of Cu being leached out from the HKUST-1 MOF framework. Fe doped HKUST-1 MOFs showed exceptionally high Pb(II) selectivity, Pb(II) removal efficiency of > 90%, and a high Pb(II) adsorption capacity of 565 mg g-1. This study opens up the possibility of using doping as a strategy to enhance the hydrostability of HKUST-1 MOF and in the process improve its applicability for environmental remediation applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据