4.7 Article

Thermal modification of copper slag via phase transformation for simultaneous removal of SO2 and NOx from acid-making tail gas

期刊

CHEMICAL ENGINEERING JOURNAL
卷 425, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.131646

关键词

Copper slag; Thermal modification; Calcium oxide; Structural conversion; Desulfurization; Denitrification

资金

  1. National Natural Science Foundation of China [51708266, 51968034, 21667015, 41807373]
  2. National Key R&D Program of China [2018YFC1900305, 2018YFC0213400]
  3. Analysis and Testing Foundation of Kunming University of Science And Technology

向作者/读者索取更多资源

A novel wet method utilizing highly active slurry containing CaO-thermally modified copper slag and KMnO4 oxidant has been developed for simultaneous removal of NOx and SO2, achieving high removal efficiency. The study also found that the efficiency of NOx removal primarily depends on calcination temperature, with CaO dosage and calcination time having a minor influence.
The high desulfurization capacity has been obtained in the wet process when using industrial waste solids as novel absorbents, however, the high-efficient NOx removal remains as a challenge. Here we report a novel wet method with highly active slurry containing CaO-thermally modified copper slag and KMnO4 oxidant to remove NOx and SO2 simultaneously. We demonstrate a best removal efficiency of 84.4% and 100% for NOx and SO2, respectively. The enhanced efficiency was achieved with 30 wt% CaO and calcinated at 800 degrees C for 200 min. Interestingly, the NOx removal efficiency was primarily depending on calcination temperature, while CaO dosage and calcination time had an insignificant influence. The increasing NOx removal efficiency could be attributed to the optimized phase structure of copper slag and the higher alkalinity of the slurry. Specifically, the phase structure of the original copper slag was effectively converted by CaO calcination, resulting in a decrease in the contents of Fe(II)-containing substances including Fe3O4, Fe2SiO4, and metal sulfides. Through composition simulation experiments with raw copper slag, Fe2O3, CuFe2O4, and CuO in the modified equivalent were identified to be responsible for the NOx removal. On the contrary, Ca3Fe2(SiO4)(3) formed at higher calcination temperatures was detrimental to NOx removal efficiency. With characterizing the modified copper slag samples via XRD before and after reaction along with analyzing the spent solution with ion chromatography (IC), we proposed a corresponding reaction mechanism of simultaneous removal of NOx and SO2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据