4.7 Article

Highly selective CO2 capture and photoreduction over porous carbon nitride foams/LDH monolith

期刊

CHEMICAL ENGINEERING JOURNAL
卷 429, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.132284

关键词

LDH; CN foam; Heterostructure; CO2 photoreduction

资金

  1. National Natural Science Foundation of China [21977022, 21671046, 21803014]
  2. Guangxi Natural Science Foundation of China [2017GXNSFGA198004, 2018GXNSFFA281004, 2019GXNSFBA245022]
  3. Guangxi Technology Base and Talent Subject [AD19245110]

向作者/读者索取更多资源

The study successfully fabricated a g-C3N4 (CN) foam/LDH heterojunction monolith with good CO2 adsorption performance and enhanced CO2 photoreduction activity. The practical applicability of NCF monolith with different thicknesses was demonstrated for the first time, showing great potential for efficient capture and photoreduction of CO2.
Sunlight-driven photocatalytic CO2 into useful carbon compounds is an ideal way to mitigate the greenhouse effect. However, this strategy is limited by poor light absorption and rapid photoexcited electron-hole recombination of traditional photocatalysts. Here, a g-C3N4 (CN) foam/LDH heterojunction monolith (NCF) was fabricated by growing NiFe-LDH in situ on the porous CN foam substrate. The composite had good air permeability and light transmittance, which improves light-harvesting, CO2 capture, and interfaces charge transfer of the NCF. The results show that the NCF catalyst has good CO2 adsorption performance (1.52 mmol g(-1)) and enhanced CO2 photoreduction activity (55.1 mu mol g(-1)h(-1)), which is similar to 10 times higher than that of pure LDHs powder. Furthermore, the practical applicability of the NCF monolith with different thicknesses is illustrated via the CO2 photoreduction test for the first time. This work could shed light on the development of dual-functional materials for efficient capture and photoreduction of CO2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据