4.5 Article

Analyses on CH4 and CO2 hydrate formation to define the optimal pressure for CO2 injection to maximize the replacement efficiency into natural gas hydrate in presence of a silica-based natural porous medium, via depressurization techniques

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cep.2021.108512

关键词

Natural gas hydrates; CO2 storage; CH4 recovery; CO2/CH4 replacement; Depressurization; CO2 capture

向作者/读者索取更多资源

This study demonstrated that conducting CO2 hydrate formation experiments starting at 40 bar pressure is the most effective solution, as it allows for a shorter formation time and reduces the required pressure drop. The more effective kinetic of the process and the negligible risk of methane hydrate re-formation make the 40 bar CO2 injection into the reservoir the best solution to optimize methane recovery, carbon dioxide storage, and seafloor deformations.
To make natural gas hydrate an energy source available for large-scale applications, some issues must be solved; amongst them, the low kinetic characterizing the process and re-formation of methane hydrate are the most significant. In this paper methane and carbon dioxide hydrate formation was tested in presence of a natural silica-based porous sand, with the aim of define the most useful pressure value for carbon dioxide injection into reservoirs in order to apply replacement strategies via depressurization. A direct comparison between CO2 hydrate formation tests starting respectively from 30 bar and 40 bar, revealed that this latter solution represents the most effective solution. While moles of CO2 involved into hydrate and, more in general, moles of CO2 permanently stored, are similar in both typologies of tests, the time necessary to complete the formation process was drastically lower in tests started from 40 bar. Moreover, a lower pressure drop would be required. The more effective kinetic of the process and the negligible risk of methane hydrate re-formation verified during experiments, allowed to consider the CO2 injection into the reservoir at 40 bar the best solution to optimize methane recovery, carbon dioxide storage and seafloor deformations due to the reservoir exploitation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据