4.4 Article

A Hexameric Ribozyme Nanostructure Formed by Double-Decker Assembly of a Pair of Triangular Ribozyme Trimers

期刊

CHEMBIOCHEM
卷 23, 期 6, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cbic.202100573

关键词

group I introns; ribozymes; RNA nanostructures; RNA nanotechnology; Tetrahymena

资金

  1. University of Toyama

向作者/读者索取更多资源

Naturally occurring ribozymes with modular architecture are promising for designing and assembling three-dimensional RNA nanostructures with catalytic abilities. In this study, RNA nanostructures with polygonal-shaped ribozyme oligomers were constructed using unit RNAs from the Tetrahymena group I intron, and ribozyme trimers with a triangular shape were dimerized by introducing pillar units. The resulting double-decker nanostructures containing six ribozyme units showed higher catalytic activity than the parent ribozyme trimers.
The modular architecture of naturally occurring ribozymes makes them a promising class of structural platform for the design and assembly of three-dimensional (3D) RNA nanostructures, into which the catalytic ability of the platform ribozyme can be installed. We have constructed and analyzed RNA nanostructures with polygonal-shaped (closed) ribozyme oligomers by assembling unit RNAs derived from the Tetrahymena group I intron with a typical modular architecture. In this study, we dimerized ribozyme trimers with a triangular shape by introducing three pillar units. The resulting double-decker nanostructures containing six ribozyme units were characterized biochemically and their structures were observed by atomic force microscopy. The double-decker hexamers exhibited higher catalytic activity than the parent ribozyme trimers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据