4.7 Article

Chirped periodic and localized waves in a weakly nonlocal media with cubic-quintic nonlinearity

期刊

CHAOS SOLITONS & FRACTALS
卷 153, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chaos.2021.111496

关键词

Optical solitons; Chirped traveling waves; Nonlinear Schrodinger equation

向作者/读者索取更多资源

The study investigates the propagation of one-dimensional optical beams in a weakly nonlocal medium with cubic-quintic nonlinearity, finding various periodic waves and solitary waves present. Explicit solutions of the envelope model equation are obtained through an efficient transformation, and the applications of self-similar structures in an amplification system are discussed.
We study the propagation of one-dimentional optical beams in a weakly nonlocal medium exhibiting cubic-quintic nonlinearity. A nonlinear equation governing the evolution of the beam intensity in the nonlocal medium allows us to examine whether the traveling-waves exist in such optical material. An efficient transformation is applied to obtain explicit solutions of the envelope model equation in the presence of all material parameters. We find that a variety of periodic waves accompanied with a nonlinear chirp do exist in the system in the presence of the weak nonlocality. Chirped localized intensity dips on a continuous-wave background as well as solitary waves of the bright and dark types are obtained in a long wave limit. A class of propagating chirped self-similar solitary beams is also identified in the material with the consideration of the inhomogeneities of media. The applications of the obtained self-similar structures are discussed by considering a periodic distributed amplification system. (c) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据