4.7 Article

On the bandwidth of stable nonlinear stripe patterns in finite size systems

期刊

CHAOS
卷 31, 期 11, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0066762

关键词

-

资金

  1. Elite Study Program Biological Physics

向作者/读者索取更多资源

Nonlinear stripe patterns are stable at different wavenumbers q and can evolve into different stable patterns through instabilities, influenced by system size and boundary conditions. In small system sizes, periodic patterns can be stable in certain parameter ranges simultaneously.
Nonlinear stripe patterns occur in many different systems, from the small scales of biological cells to geological scales as cloud patterns. They all share the universal property of being stable at different wavenumbers q, i.e., they are multistable. The stable wavenumber range of the stripe patterns, which is limited by the Eckhaus- and zigzag instabilities even in finite systems for several boundary conditions, increases with decreasing system size. This enlargement comes about because suppressing degrees of freedom from the two instabilities goes along with the system reduction, and the enlargement depends on the boundary conditions, as we show analytically and numerically with the generic Swift-Hohenberg (SH) model and the universal Newell-Whitehead-Segel equation. We also describe how, in very small system sizes, any periodic pattern that emerges from the basic state is simultaneously stable in certain parameter ranges, which is especially important for the Turing pattern in cells. In addition, we explain why below a certain system width, stripe patterns behave quasi-one-dimensional in two-dimensional systems. Furthermore, we show with numerical simulations of the SH model in medium-sized rectangular domains how unstable stripe patterns evolve via the zigzag instability differently into stable patterns for different combinations of boundary conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据