4.7 Article

First-principles investigation of oxidation mechanism of Al-doped Mo5Si3 silicide

期刊

CERAMICS INTERNATIONAL
卷 48, 期 8, 页码 11518-11526

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2022.01.007

关键词

Mo-5 Si-3 silicide; Mo-Si-Al silicide; Oxidation resistance; Bonding; First-principles calculations

资金

  1. Southwest Petroleum University Graduate Innovation Fund [2020CXZD20]

向作者/读者索取更多资源

Hydrogen and oxygen have a negative impact on the mechanical properties of high-temperature materials. In this study, the oxidation mechanism of Mo-Si-Al silicide was investigated through first-principles calculations. The results showed that the presence of Al improved the oxidation resistance of Mo5Si3 by enhancing the localized hybridization between Al and O atoms.
The hydrogen and oxygen are harmful elements to influence the mechanical properties of high-temperature materials. Although the Mo-Si-Al silicide is a promising high-temperature material, the oxidation mechanism of Mo-Si-Al silicide is unclear. To solve the key problem, in this work, the oxidation mechanism of Mo-Si-Al ternary silicide is studied by the first-principles calculations. In particular, the oxidation behavior of the prefect Mo5Si3 is revealed. The calculated result shows that the O atom prefers to occupy the octahedral interstice (Oct2) position because the calculated oxygen impurity formation energy of Oct2 model is smaller than the tetrahedral interstices (Tet1 and Tet2) and octahedral interstice(Oct1). In particular, it is found that the Mo5Si2Al, Mo5SiAl2, Mo5Al3 and Mo4AlSi3 are stability based on the analysis of thermodynamic model and phonon dispersion. The O atom prefers to occupy the Mo5SiAl2-Oct2 and Mo5Al3-Oct2 models because the calculated oxygen impurity formation energy of Mo5SiAl2-Oct2 and Mo5Al3-Oct2 models is smaller than the other Mo-Si-Al silicides and the perfect Mo5Si3. Naturally, the improvement of oxidation resistance is that the additive Al can enhance the localized hybridization between Al and O. Therefore, the formation of Al-O bond improves the oxidation resistance of Mo5Si3.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据