4.7 Letter

Significantly reduced abilities to cross-neutralize SARS-CoV-2 variants by sera from convalescent COVID-19 patients infected by Delta or early strains

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Biochemistry & Molecular Biology

Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera

Daming Zhou et al.

Summary: The race to develop vaccines against SARS-CoV-2 variants, such as B.1.1.7, B.1.351, and P.1, is ongoing as these variants have mutations in the spike protein, potentially leading to immune escape. A structure-function analysis of B.1.351 revealed tighter ACE2 binding and widespread evasion from monoclonal antibody neutralization, particularly driven by the E484K mutation.
Article Biochemistry & Molecular Biology

SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma

Constantinos Kurt Wibmer et al.

Summary: The SARS-CoV-2 virus in the B.1.351 variant discovered in South Africa can evade neutralization by most antibodies when expressed, but does not affect binding by convalescent plasma. This suggests the potential for reinfection with antigenically distinct variants and predicts reduced efficacy of spike-based vaccines.

NATURE MEDICINE (2021)

Article Biochemistry & Molecular Biology

Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum

Chang Liu et al.

Summary: Recent study examined the neutralizing ability of monoclonal antibodies, convalescent and vaccine sera against the Indian variants B.1.617.1 and B.1.617.2, showing that the neutralization of these variants is reduced compared to the ancestral strains, without widespread antibody escape as seen in other variants like B.1.351.
Article Multidisciplinary Sciences

Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization

Delphine Planas et al.

Summary: The SARS-CoV-2 B.1.617 Delta variant, first identified in India in 2020, has become dominant in some regions and is spreading to many countries. This variant shows resistance to certain monoclonal antibodies and antibodies in convalescent sera, as well as reduced neutralization by some COVID-19 vaccines. Administration of two doses of the vaccine is needed for a neutralizing response against the Delta variant.

NATURE (2021)

Article Medicine, General & Internal

Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile

Alejandro Jara et al.

Summary: A study in Chile involving 10.2 million participants assessed the effectiveness of an inactivated SARS-CoV-2 vaccine developed in China. Fully immunized individuals had vaccine effectiveness of 65.9% for preventing Covid-19 and 87.5% for preventing hospitalization, 90.3% for preventing ICU admission, and 86.3% for preventing death.

NEW ENGLAND JOURNAL OF MEDICINE (2021)

Article Cell Biology

SARS-CoV-2 variant B.1.617 is resistant to bamlanivimab and evades antibodies induced by infection and vaccination

Markus Hoffmann et al.

Summary: The emergence of the B.1.617 variant in India may be responsible for the sharp increase in COVID-19 cases and deaths. B.1.617 shows increased efficiency in entering cells and evades antibody responses, contributing to its rapid spread.

CELL REPORTS (2021)

Article Multidisciplinary Sciences

SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion

Petra Mlcochova et al.

Summary: The B.1.617.2 (Delta) variant of SARS-CoV-2 has lower sensitivity to antibodies and higher replication efficiency compared to other lineages, which may contribute to its dominance and reduced vaccine effectiveness, highlighting the need for continued infection control measures post-vaccination.

NATURE (2021)

Correction Biochemistry & Molecular Biology

Coronavirus RNA Proofreading: Molecular Basis and Therapeutic Targeting (vol 79, pg 710, 2020)

Fran Robson et al.

MOLECULAR CELL (2020)