4.6 Article

Lower Limb Wearable Robots for Assistance and Rehabilitation: A State of the Art

期刊

IEEE SYSTEMS JOURNAL
卷 10, 期 3, 页码 1068-1081

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSYST.2014.2351491

关键词

Actuation design; assessment methods; control strategies; lower limb exoskeletons

资金

  1. European Commission within the Seventh Framework Program [FP7-ICT-2013-10-611695]

向作者/读者索取更多资源

Neurologic injuries, such as stroke, spinal cord injuries, and weaknesses of skeletal muscles with elderly people, may considerably limit the ability of this population to achieve the main daily living activities. Recently, there has been an increasing interest in the development of wearable devices, the so-called exoskeletons, to assist elderly as well as patients with limb pathologies, for movement assistance and rehabilitation. In this paper, we review and discuss the state of the art of the lower limb exoskeletons that are mainly used for physical movement assistance and rehabilitation. An overview of the commonly used actuation systems is presented. According to different case studies, a classification and comparison between different types of actuators is conducted, such as hydraulic actuators, electrical motors, series elastic actuators, and artificial pneumatic muscles. Additionally, the mainly used control strategies in lower limb exoskeletons are classified and reviewed, based on three types of human-robot interfaces: the signals collected from the human body, the interaction forces between the exoskeleton and the wearer, and the signals collected from exoskeletons. Furthermore, the performances of several typical lower limb exoskeletons are discussed, and some assessment methods and performance criteria are reviewed. Finally, a discussion of the major advances that have been made, some research directions, and future challenges are presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据