4.5 Article

Cobalt(II)-Imidazoles Passivated α-Fe2O3 Photoanode for Enhanced Photoelectrochemical Water Oxidation

期刊

CATALYSIS LETTERS
卷 152, 期 11, 页码 3294-3303

出版社

SPRINGER
DOI: 10.1007/s10562-021-03909-w

关键词

alpha-Fe2O3; Cobalt imidazole; Surface passivation; Photoelectrochemical water oxidation

资金

  1. Scientific Research Fund of Hunan Provincial Education Department [21A0089]
  2. Natural Science Foundation of Hunan Province [2019JJ50595]

向作者/读者索取更多资源

Two types of cobalt imidazole complexes are used as surface passivation agents to modify Sn-Fe2O3 NRs photoanode, leading to enhanced photoelectrochemical water oxidation performance.
Two types of cobalt imidazole complexes, e.g. cobalt 2-methylimidazole (Co-EIm) and cobalt 1-ethylimidazole (Co-EIm), are adopted as surface passivation agents to modify the Sn-doped alpha-Fe2O3 nanorods (Sn-Fe2O3 NRs) photoanode by a facile impregnation method. Systematic characterizations are performed and the fabricated photoanodes are applied to photoelectrochemical (PEC) water oxidation. Interestingly, the cobalt imidazoles nanosheets are embedded into the Sn-Fe2O3 NRs film to form crack-like gaps and NRs bundles on the surface of the composite photoanodes, e.g. Co-MIm@Sn-Fe2O3 and Co-EIm@Sn-Fe2O3. With simulated sunlight irradiation and an applied potential of 1.23 V (vs. RHE), the photocurrent densities of the Co-EIm@Sn-Fe2O3 and Co-MIm@Sn-Fe2O3 reach 0.81 mA/cm(2) and 0.61 mA/cm(2) with enhanced stability, respectively, compared with 0.36 mA/cm(2) of the Sn-Fe2O3. The gaps and bundles on the surface of the composite photoanodes make the surface rougher and improve their light absorption ability. Moreover, the cobalt imidazoles as passivation agents can effectively inhibit surface states from capturing charge carriers, reduce charge recombination and facilitate charge transfer, thus improving the PEC performance. Notably, it is found that the cobalt imidazole with a longer alkyl chain, e.g. Co-EIm, is more effective than the Co-MIm. [GRAPHICS] .

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据