4.8 Article

Covalently binding ultrafine MoS2 particles to N, S co-doped carbon renders excellent Na storage performances

期刊

CARBON
卷 184, 期 -, 页码 177-185

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2021.08.019

关键词

Ultrafine MoS2 nanoparticles; N, S co-Doped carbon; Sodium-ion batteries; Anode; Density function theory calculations

资金

  1. National Natural Science Foundation of China [51902261, 61935017]
  2. Department of Science & Technology of Shaanxi Province [2020GXLH-Z-024]
  3. NPU [2020GXLH-Z-024]
  4. Natural Science Basic Research Program of Shaanxi [2019JQ-025]
  5. Projects of International Cooperation and Exchanges NSFC [51811530018]
  6. Fundamental Research Funds for the Central Universities [31020180QD094, 31020180QD116, G2021KY05106]

向作者/读者索取更多资源

The study presents a carefully designed MoS2/NSC architecture that overcomes the issue of large volume fluctuations in MoS2 in sodium-ion batteries, demonstrating excellent sodium storage performance and kinetics, providing a new and efficient avenue for the development of MoS2 anodes in SIBs.
MoS2 has attracted much interest for the potential application in sodium-ion batteries (SIBs) anodes because of the high theoretical capacity and electrochemical activity with Na. However, poor electrochemical performance caused by severe volume variations during the charge/discharge processes limits its practical application. Herein, we present an elaborately designed architecture comprising ultrafine MoS2 nanoparticles covalently bonded to N, S co-doped carbon (MoS2/NSC) via an in situ solid-state growth process, which displays high-capacity Na storage, fast sodiation/desodiation kinetics, and substantially mitigated volume fluctuations. As a consequence, MoS2/NSC delivers outstanding Na storage performances including a high reversible capacity of 340 mA h g(-1) at 100 mA g(-1) and a rate capacity of 208 mA h g(-1) at 2000 mA g(-1). Further assembling with a Na3V2(PO4)(3)/C cathode, the full-cell delivers a specific capacity of 238 mA h g(-1) after 80 cycles at 50 mA g(-1), demonstrating the great potential of our MoS2/NSC electrode. Density function theory calculations manifest that NSC not only presents strong binding to MoS2 but also significantly decreases the Na ion diffusion energy barrier, thus leading to robust structure stability and fast electrode kinetics. This study may open a new and efficient avenue for developing advanced MoS2 anodes for SIBs. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据